Skip to main content
Log in

The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Saleem, F. Ahmed, M. Asif Rafiq, M. Ajmal, and L. Ali, Eng. Fail. Anal. 46, 157 (2014).

    Article  Google Scholar 

  2. B.T. Lu, J.L. Luo, and P.R. Norton, Corros. Sci. 52, 1787 (2010).

    Article  Google Scholar 

  3. P. Liang, X. Li, C. Du, and X. Chen, Mater. Des. 30, 1712 (2009).

    Article  Google Scholar 

  4. Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li, and X.G. Li, Mater. Sci. Eng. A 658, 348 (2016).

    Article  Google Scholar 

  5. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008).

    Article  Google Scholar 

  6. T. Doshida, M. Nakamura, H. Saito, T. Sawada, and K. Takai, Acta Mater. 61, 7755 (2013).

    Article  Google Scholar 

  7. T. Doshida and K. Takai, Acta Mater. 79, 93 (2014).

    Article  Google Scholar 

  8. T. Neeraj, R. Srinivasan, and J. Li, Acta Mater. 60, 5160 (2012).

    Article  Google Scholar 

  9. C. Hwang and I.M. Berstein, Acta Metall. 34, 1001 (1986).

    Article  Google Scholar 

  10. H. Shoda, H. Suzuki, K. Takai, and Y. Hagihara, ISIJ Int. 50, 115 (2010).

    Article  Google Scholar 

  11. H. Qiu, H. Mori, M. Enoki, and T. Kishi, ISIJ Int. 39, 358 (1999).

    Article  Google Scholar 

  12. P. Fassina, F. Bolzoni, G. Fumagalli, L. Lazzari, L. Vergani, and A. Sciuccati, Proc. Eng. 10, 3226 (2011).

    Article  Google Scholar 

  13. M. Wang, E. Akiyama, and K. Tsuzaki, Scr. Mater. 52, 403 (2005).

    Article  Google Scholar 

  14. T. Doshida, H. Suzuki, K. Takai, N. Oshima, and T. Hirade, ISIJ Int. 52, 198 (2012).

    Article  Google Scholar 

  15. R. Mastumoto, N. Nishiguchi, S. Taketomi, and N. Miyazaki, J. Soc. Mater. Sci. Jpn. 39, 182 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Takai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, M., Suzuki, H., Seko, Y. et al. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel. JOM 69, 1375–1380 (2017). https://doi.org/10.1007/s11837-017-2371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2371-1

Keywords

Navigation