Skip to main content
Log in

Influence of Re Concentration on the Mechanical Properties of Tungsten Borides from First-Principles Calculations

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tungsten borides are promising high-temperature materials. However, the structure and hardening mechanisms of tungsten boride are still great challenges. To solve the problems, we apply the first-principles method to study the structure of WB3 and explore the influence of alloying element Re on the mechanical properties of WB3. The calculated Vickers hardness of WB3 is 39.1 GPa. We further find that a low concentration of Re can improve the hardness of WB3, which is in good agreement with the experimental result. However, the hardness and elastic properties of WB3 decrease gradually with increasing Re concentration. The calculated results show that the structure and hardness of WB3 are attributed to the B–B hexagonal prism. A high concentration of Re weakens the charge interaction between the B–B atoms, and reduces the mechanical properties of WB3. Therefore, we can adjust the alloy concentration to improve the Vickers hardness of transition metal borides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Moscicki, J. Radziejewska, J. Hoffman, J. Chrzanowska, N.L. Zayonts, D. Garbiec, and Z. Szymanski, Ceram. Int. 41, 8273 (2015).

    Article  Google Scholar 

  2. Y. Pan, W.M. Guan, and W.T. Zheng, Dalton Trans. 43, 5168 (2014).

    Article  Google Scholar 

  3. J.B. Levine, J.B. Betts, J.D. Garrett, S.Q. Guo, J.T. Eng, A. Migliori, and R.B. Kaner, Acta Mater. 58, 1530 (2010).

    Article  Google Scholar 

  4. M. Wang, Y.W. Li, T. Cui, Y.M. Ma, and G.T. Zou, Appl. Phys. Lett. 93, 101905 (2008).

    Article  Google Scholar 

  5. G. Akopov, M.T. Yeung, Z.C. Sobell, C.L. Turner, C.W. Lin, and R.B. Kaner, Chem. Mater. 28, 6605 (2016).

    Article  Google Scholar 

  6. D. Zhou, J. Wang, Q. Cui, and Q. Li, J. Appl. Phys. 115, 113504 (2014).

    Article  Google Scholar 

  7. B. Chu, D. Li, K. Bao, F. Tian, D. Duan, X. Sha, B. Liu, and T. Cui, J. Alloys. Compd. 617, 660 (2014).

    Article  Google Scholar 

  8. R. Mohammadi, C.L. Turner, M. Xie, M.T. Yeung, A.T. Lech, S.H. Tolbert, and R.B. Kaner, Chem. Mater. 28, 632 (2016).

    Article  Google Scholar 

  9. M.T. Yeung, J. Lei, R. Mohammadi, C.L. Turner, Y. Wang, S.H. Tolbert, and R.B. Kaner, Adv. Mater. 28, 6993 (2016).

    Article  Google Scholar 

  10. Y. Liang, Z. Fu, X. Yuan, S. Wang, Z. Zhong, and W. Zhang, Europhys. Lett. 98, 66004 (2012).

    Article  Google Scholar 

  11. Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Phys. Rev. Lett. 115, 185502 (2015).

    Article  Google Scholar 

  12. Q. Tao, D. Zheng, X. Zhao, Y. Chen, Q. Li, Q. Li, C. Wang, T. Cui, Y. Ma, X. Wang, and P. Zhu, Chem. Mater. 26, 5297 (2014).

    Article  Google Scholar 

  13. C. Zang, H. Sun, and C. Chen, Phys Rev B. 86, 180101 (2012).

    Article  Google Scholar 

  14. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002).

    Article  Google Scholar 

  15. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  16. X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  17. L.F. Huang and Z. Zeng, J. Phys. Chem. C 119, 18779 (2015).

    Article  Google Scholar 

  18. Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Phys. Rev. Lett. 110, 136403 (2013).

    Article  Google Scholar 

  19. R. Mohammadi, A.T. Lech, M. Xie, B.E. Weaver, M.T. Yeung, S.H. Tolbert, and R.B. Kaner, Proc. Natl. Acad. Sci. USA 108, 10958 (2011).

    Article  Google Scholar 

  20. M. Mazdziarz and T. Moscicki, Mater. Chem. Phys. 179, 92 (2016).

    Article  Google Scholar 

  21. E. Zhao, J. Meng, Y. Ma, and Z. Wu, Phys. Chem. Chem. Phys. 12, 13158 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51274170). We thank Lady Yun Zheng for help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Pan or Yuanhua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Lin, Y. Influence of Re Concentration on the Mechanical Properties of Tungsten Borides from First-Principles Calculations. JOM 69, 2009–2013 (2017). https://doi.org/10.1007/s11837-017-2483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2483-7

Navigation