Skip to main content
Log in

Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies

  • Characterization of Advanced High Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 23

Similar content being viewed by others

References

  1. R. Elliott, K. Coley, S. Mostaghel, and M. Barati, JOM (2018). https://doi.org/10.1007/s11837-018-2769-4.

    Google Scholar 

  2. G.J.W. Kor, Metall. Trans. B 9B, 307 (1978).

    Article  Google Scholar 

  3. W.J. Rankin and J.S.J. van Deventer, J. South Afr. Inst. Min. Metall. 2, 239 (1980).

    Google Scholar 

  4. J.S.J. van Deventer, Thermochim. Acta 112, 365 (1987).

    Article  Google Scholar 

  5. J.S.J. van Deventer, Thermochim. Acta 125, 107 (1988).

    Article  Google Scholar 

  6. M.A. Reuter and J.S.J. van Deventer, Thermochim. Acta 125, 99 (1988).

    Article  Google Scholar 

  7. K. Terayama and M. Ikeda, Trans. Jpn. Inst. Metals 26, 108 (1985).

    Article  Google Scholar 

  8. R. Kononov, O. Ostrovski, and S. Ganguly, Metall. Mater. Trans. B 39, 662 (2008).

    Article  Google Scholar 

  9. H.K. Shin, B.D. Lee, H.S. Lee, and Y.E. Lee, in Conference paper from the Thirteenth International Ferroalloys Congress (Almaty, Kazakhstan, 2013).

  10. C.H. Eom and D.J. Min, Met. Mater. Int. 22, 129 (2016).

    Article  Google Scholar 

  11. D. Kim and S. Jung, ISIJ Int. 56, 71 (2016).

    Article  Google Scholar 

  12. W.D. Grimsley, J.B. See, and R.P. King, J. South Afr. Inst. Min. Metall. 78, 51 (1977).

    Google Scholar 

  13. R.H. Eric and E. Burucu, Miner. Eng. 5, 795 (1992).

    Article  Google Scholar 

  14. G. Akdogan and R.H. Eric, Miner. Eng. 7, 633 (1994).

    Article  Google Scholar 

  15. G. Akdogan and R.H. Eric, Metall. Mater. Trans. B 26, 13 (1995).

    Article  Google Scholar 

  16. O.I. Ostrovski and T.J.M. Webb, ISIJ Int. 35, 331 (1995).

    Article  Google Scholar 

  17. M. Yastreboff, O. Ostrovski, and S. Ganguly, ISIJ Int. 43, 161 (2003).

    Article  Google Scholar 

  18. M. Kumar, S. Ranganathan, and S.N. Sinha, in INFACON XI (2007), pp. 241–246.

  19. R.S. Braga, C. Takano, and M.B. Mourão, Ironmak. Steelmak. 34, 279 (2007).

    Article  Google Scholar 

  20. R. Kononov, O. Ostrovski, and S. Ganguly, in INFACON XI (New Delhi, India, 2007), pp. 256–267.

  21. K. Ohler-Martins and D. Senk, Steel Res. Int. 79, 811 (2008).

    Article  Google Scholar 

  22. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1099 (2009).

    Article  Google Scholar 

  23. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1107 (2009).

    Article  Google Scholar 

  24. R. Kononov, O. Ostrovski, and S. Ganguly, ISIJ Int. 49, 1115 (2009).

    Article  Google Scholar 

  25. K.S. Abdel Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy, Ironmak. Steelmak. 38, 279 (2011).

    Article  Google Scholar 

  26. W.J. Rankin and J.R. Wynnyckyj, Metall. Mater. Trans. B 28, 307 (1997).

    Article  Google Scholar 

  27. E.T. Turkdogan and J.V. Vinters, Carbon N. Y. 7, 101 (1969).

    Article  Google Scholar 

  28. R.H. Tien and E.T. Turkdogan, Carbon N. Y. 8, 607 (1970).

    Article  Google Scholar 

  29. K. Terayama and T. Shimazaki, Netsu Sokutei 27, 13 (1999).

    Google Scholar 

  30. N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1480 (2004).

    Article  Google Scholar 

  31. N. Anacleto, O. Ostrovski, and S. Ganguly, ISIJ Int. 44, 1615 (2004).

    Article  Google Scholar 

  32. A. Bhalla, and R.H. Eric, in 14th International Ferroalloys Congress (Kiev, Ukraine, 2015), pp. 461–469.

  33. R.H. Eric, A. Bhalla, P. Halli, and P. Taskinen, in Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies (2017), pp. 307–318. https://doi.org/10.1007/978-3-319-51091-0_29.

    Chapter  Google Scholar 

  34. O. Ostrovski and G. Zhang, AIChE J. 52, 300 (2006).

    Article  Google Scholar 

  35. E.T. Turkdogan, V. Koump, J.V. Vinters, and T.F. Perzak, Carbon N. Y. 6, 467 (1968).

    Article  Google Scholar 

  36. J.D. Blackwood and A.J. Ingeme, Aust. J. Chem. 13, 194 (1960).

    Article  Google Scholar 

  37. T.F. Wall, G.S. Liu, H.W. Wu, D.G. Roberts, K.E. Benfell, S. Gupta, J.A. Lucas, and D.J. Harris, Prog. Energy Combust. Sci. 28, 405 (2002).

    Article  Google Scholar 

  38. E.T. Turkdogan and J.V. Vinters, Carbon N. Y. 8, 39 (1970).

    Article  Google Scholar 

  39. A. Koursaris, A.S.E. Kleyenstuber, and C.W.P. Finn, Spec. Publ. Geol. Soc. South Afr. 7, 375 (1983).

    Google Scholar 

  40. A. Koursaris and J.B. See, J. South Afr. Inst. Min. Metall. 79, 149 (1979).

    Google Scholar 

  41. A. Koursaris and J. See, J. South. Afr. Inst. Min. Metall. 80, 229 (1980).

    Google Scholar 

  42. M. Tangstad, Manganese Ferroalloys Technology, 12th ed. (Amsterdam: Elsevier, 2013).

    Google Scholar 

  43. T.-A. Skjervheim and S.E. Olsen, in INFACON 7 (1995), pp. 631–640.

  44. W. Ding and S.E. Olsen, ISIJ Int. 40, 850 (2000).

    Article  Google Scholar 

  45. S. Gaal, K. Berg, G. Tranell, S.E. Olsen, and M. Tangstad, in VII International Conference on Molten Slags, Fluxes and Salts (2004), p. 651.

  46. J. Safarian, O. Grong, L. Kolbeinsen, and S.E. Olsen, ISIJ Int. 46, 1120 (2006).

    Article  Google Scholar 

  47. J. Safarian, G. Tranell, L. Kolbeinsen, M. Tangstad, S. Gaal, and J. Kaczorowski, Metall. Mater. Trans. B 39, 702 (2008).

    Article  Google Scholar 

  48. J. Safarian and L. Kolbeinsen, ISIJ Int. 48, 395 (2008).

    Article  Google Scholar 

  49. J. Safarian, L. Kolbeinsen, M. Tangstad, and G. Tranell, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 40, 929 (2009).

    Article  Google Scholar 

  50. E. Ringdalen, S. Gaal, M. Tangstad, and O. Ostrovski, Metall. Mater. Trans. B 41, 1220 (2010).

    Article  Google Scholar 

  51. H. Sun, M.Y. Lone, S. Ganguly, and O. Ostrovski, ISIJ Int. 50, 639 (2010).

    Article  Google Scholar 

  52. A. Blagus, J.R. Dankwah, and V. Sahajwalla, ISIJ Int. 53, 41 (2013).

    Article  Google Scholar 

  53. M. Zaki, M. Hasan, L. Pasupulety, and K. Kumari, Thermochim. Acta 311, 97 (1998).

    Article  Google Scholar 

  54. P. Perreault and G.S. Patience, Chem. Eng. J. 295, 227 (2016).

    Article  Google Scholar 

  55. A.A. El-Geassy, M.I. Nasr, M.A. Yousef, M.H. Khedr, and M. Bahgat, Ironmak. Steelmak. 27, 117 (2000).

    Article  Google Scholar 

  56. Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, and C.W. Kim, Metall. Mater. Trans. B 43, 1 (2012).

    Google Scholar 

  57. Y.B. Gao, H.G. Kim, and H.Y. Sohn, Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 121, 109 (2012).

    Article  Google Scholar 

  58. K. Turkova, D. Slizovskiy, and M. Tangstad, ISIJ Int. 54, 1204 (2014).

    Article  Google Scholar 

  59. K.L. Berg and S.E. Olsen, Metall. Mater. Trans. B 31, 477 (2000).

    Article  Google Scholar 

  60. R.J. Ishak and T. Lindstad, in Yazawa International Symposium on Metallurgical and Materials Processing: Principles and Technologies (2003), pp. 63–73.

    Google Scholar 

  61. M. Tangstad, M. Sibony, S. Wasb, and R. Tronstad, in INFACON 9 (2001), pp. 202–207.

  62. H.H.A. El-Gawad, M.M. Ahmed, N.A. El-Hussiny, and M.E.H. Shalabi, OALib 1, 1 (2014).

    Article  Google Scholar 

  63. A.M. Ahmed, A.A. El-Geassy, and M.L. Mishreky, Ironmak. Steelmak. 42, 161 (2015).

    Article  Google Scholar 

  64. E.R. Stobbe, B.A. de Boer, and J.W. Geus, Catal. Today 47, 161 (1999).

    Article  Google Scholar 

  65. B. Khoshandam, R.V. Kumar, and E. Jamshidi, Can. Metall. Q. 46, 365 (2007).

    Article  Google Scholar 

  66. O. Ostrovski, N. Anacleto, and S. Ganguly, in Proceedings of the 10th International Ferroalloys Congress (2004), p. 173.

  67. H.F. Abbas and W.M.A. Wan, Daud. Int. J. Hydrogen Energy 35, 1160 (2010).

    Article  Google Scholar 

  68. A. Abánades, E. Ruiz, E.M. Ferruelo, F. Hernández, A. Cabanillas, J.M. Martínez-Val, J.A. Rubio, C. López, R. Gavela, G. Barrera, C. Rubbia, D. Salmieri, E. Rodilla, and D. Gutiérrez, Int. J. Hydrogen Energy 36, 12877 (2011).

    Article  Google Scholar 

  69. A.M. Dunker and J.P. Ortmann, Int. J. Hydrogen Energy 31, 1989 (2006).

    Article  Google Scholar 

  70. D.B. Wellbeloved, P.M. Craven, and J.W. Waudby, Ullmann’s Encycl. Ind. Chem. (2000). https://doi.org/10.1002/14356007.a16_077.

    Google Scholar 

  71. R. Kavitha and J.R. McDermid, Surf. Coat. Technol. 212, 152 (2012).

    Article  Google Scholar 

  72. P. Petrov, M. Marinov, and R. Paunova, J. Univ. Chem. Technol. Metall. 45, 431 (2010).

    Google Scholar 

  73. H. Sarangi, B. Sarangi, and A. Ray, ISIJ Int. 36, 35 (1996).

    Article  Google Scholar 

  74. J.T. Torres, A.F. Valdés, and J.M.A. Robles, Mater. Today Proc. 2, 4963 (2015).

    Article  Google Scholar 

  75. B. Jamieson and K. Coley, Metall. Mater. Trans. B, 48, 1613 (2017). https://doi.org/10.1007/s11663-017-0967-z.

    Article  Google Scholar 

  76. W.L. Daines and R.D. Pehlke, Trans. Met. Soc. AIME 242, 565 (1968).

    Google Scholar 

  77. E. Shibata, H. Sun, and K. Mori, Metall. Mater. Trans. B 30, 279 (1999).

    Article  Google Scholar 

  78. J.H. Heo, Y. Chung, and J.H. Park, Metall. Mater. Trans. B 46, 1154 (2015).

    Article  Google Scholar 

  79. H. Sohn, Z. Chen, and W. Jung, Steel Res. 71, 145 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC, STPGP463252-14). Additional thanks go to ArcelorMittal Dofasco, Stelco, Praxair, and Hatch Ltd. for in-kind support and technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elliott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, R., Coley, K., Mostaghel, S. et al. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies. JOM 70, 691–699 (2018). https://doi.org/10.1007/s11837-018-2773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2773-8

Navigation