Skip to main content

Advertisement

Log in

Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking

  • Green Steelmaking Technologies
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.N. Toulouevski and I.Y. Zinurov, Innovation in Electric Arc Furnaces (Berlin: Springer, 2010), p. 1.

    Book  Google Scholar 

  2. B. Lee and I. Sohn, JOM 69, 1581 (2014).

    Article  Google Scholar 

  3. W.S. Association, Steel Statistical Yearbook 2016 (Brussels: World Steel Association, 2017).

    Google Scholar 

  4. C.L. Li and M.S. Tsai, ISIJ Int. 33, 284 (1993).

    Article  Google Scholar 

  5. M.C. Silva, A.M. Bernardes, C.P. Bergmann, J.A.S. Tenório, and D. Espinosa, Ironmak. Steelmak. 35, 315 (2008).

    Article  Google Scholar 

  6. B. Li, ISIJ Int. 40, 863 (2007).

    Article  Google Scholar 

  7. N. Arzpeyma, O. Widlund, M. Ersson, and P. Jonsson, ISIJ Int. 53, 48 (2013).

    Article  Google Scholar 

  8. D.A. Goldstein and R.J. Fruehan, Metall. Mater. Trans. B 30, 945 (1999).

    Article  Google Scholar 

  9. K. Harashima, S. Mizoguchi, and H. Kajioka, Tetsu-to-Hagané 74, 441 (2009).

    Article  Google Scholar 

  10. H. Wang, R. Zhu, X. Wang, and Z. Li, Process. Extr. Metall. Trans. Inst. Min. Metall. Sect. C 126, 47 (2017).

    Article  Google Scholar 

  11. H. Wang, H. Yu, L. Teng, and S. Seetharaman, J. Min. Metall. Sect. B Meatal. 52, 1 (2016).

    Article  Google Scholar 

  12. Y. Gu, H. Wang, R. Zhu, J. Wang, M. Lv, and H. Wang, Steel Res. Int. 85, 589 (2014).

    Article  Google Scholar 

  13. K. Dong, R. Zhu, R. Liu, H. Wang, and C. Zhou, J. Univ. Sci. Technol. Beijing 36S1, 226 (2014).

    Google Scholar 

  14. M. Lv, R. Zhu, X. Wei, H. Wang, and X. Bi, Steel Res. Int. 83, 11 (2012).

    Article  Google Scholar 

  15. W. Xu, B. Wan, T. Zhu, and M. Shao, J. Clean. Prod. 139, 1504 (2016).

    Article  Google Scholar 

  16. L. Li, Y. Lei, and D. Pan, Nat. Hazards 81, 957 (2016).

    Article  Google Scholar 

  17. Z. Li, R. Zhu, G. Ma, and X. Wang, Ironmak. Steelmak. 44, 601 (2016).

    Article  Google Scholar 

  18. C. Yi, R. Zhu, B. Chen, C. Wang, and J. Ke, ISIJ Int. 49, 1694 (2009).

    Article  Google Scholar 

  19. T. Ohno, K. Chiba, A. Ono, M. Saeki, M. Yamauchi, and M. Kanemoto, Tetsu-to-Hagané 77, 805 (1991).

    Article  Google Scholar 

  20. F. Memoli, C. Mapelli, P. Ravanelli, and M. Corbella, ISIJ Int. 44, 1342 (2007).

    Article  Google Scholar 

  21. G. Ma, R. Zhu, K. Dong, Z. Li, R. Liu, L. Yang, and G. Wei, Ironmak. Steelmak. 43, 594 (2016).

    Article  Google Scholar 

  22. A. Giachero, F. Memoli, and A. Giachero, Ind. Heat. 1, 55 (2013).

    Google Scholar 

  23. J. Jezierski and K. Janerka, Int. J. Environ. Waste Manage. 2, 636 (2008).

    Article  Google Scholar 

  24. H.H. Rodriguez, A.N. Conejo, and R.D. Morales, Steel Res. 72, 298 (2001).

    Article  Google Scholar 

  25. R.D. Morales, G.R. Lule, F. Lopez, J. Camacho, and J. Romero, ISIJ Int. 35, 1054 (2007).

    Article  Google Scholar 

  26. M. Ikeda, A. Murashima, K. Emoto, Y. Katayama, and Y. Ichinoi, Tetsu-to-Hagane 47, 373 (1961).

    Google Scholar 

  27. K. Nagata, K. Nakanishi, F. Sudo, and K. Goto, Tetsu-to-Hagane 68, 277 (2009).

    Article  Google Scholar 

  28. Y. Gu, R. Zhu, K. Dong, and G. Xie, Steelmaking 29, 28 (2013).

    Google Scholar 

  29. B. Lee and I. Sohn, JOM 66, 1581 (2014).

    Article  Google Scholar 

  30. G. Wei, R. Zhu, K. Dong, G. Ma, and T. Cheng, Metallurgical & Materials Transactions B 47, 3066 (2016).

    Article  Google Scholar 

  31. F. Liu, R. Zhu, K. Dong, X. Bao, and F. Shi, ISIJ Int. 55, 2365 (2015).

    Article  Google Scholar 

  32. R. Zhu, X. Bi, and M. Lv, Iron Steel 47, 1 (2012).

    Google Scholar 

  33. H. Wang, R. Zhu, R. Liu, D. Shou, G. Xie, S. Fan, and Y. Gu, Ind. Heat. 43, 12 (2014).

    Google Scholar 

  34. P. He, R. Zhang, and K. Deng, J. Iron Steel Res. 8, 107 (1988).

    Google Scholar 

  35. J. Fu, S. Zhou, and P. Wang, J. Mater. Sci. Technol. 17, 233 (2001).

    Google Scholar 

  36. Z. Li, R. Zhu, R. Liu, and X. Wang, Iron Steel 59, 40 (2016).

    Google Scholar 

  37. R. Hara, A. Spence, and J. Eissenwasser, Iron Steelmaker 3, 24 (1986).

    Google Scholar 

  38. G. Dolf and M. Yuichi, Energy Policy 30, 849 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Nature Science Foundation of China (Nos. 51474024, 51734003, 51334001, 51574021 and 51604022) for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Lingzhi Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Zhu, R., Wu, X. et al. Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking. JOM 70, 969–976 (2018). https://doi.org/10.1007/s11837-018-2814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2814-3

Navigation