Skip to main content
Log in

Mathematical Modeling of the Multiphase Flow and Mixing Phenomena in a Gas-Stirred Ladle: The Effect of Bubble Expansion

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A three-dimensional discrete phase model–volume of fluid coupled model has been developed to study the argon/steel/slag/air multiphase flow and mixing phenomena in an industrial gas-stirred ladle taking the coalescence, expansion and breakup of the argon bubbles as well as the fluctuant slag layer into account. The simulated results of the flow rate and bubble size evolution of the water model, as well as the slag eye size, are in good agreement with the experimental results reported in the literature. The modeling results show that the expansion of bubbles has a significant impact on the bubble size evolution and multiphase flow in an industrial ladle. The effects of different plug configurations on the flow characteristics and mixing time in the ladle are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Lou and M. Zhu, Metall. Mater. Trans. B 45, 1706 (2014).

    Article  Google Scholar 

  2. U.C. Bandara, S.M. Asce, P.D. Yapa, and M. Asce, J. Hydraul. Eng. 137, 729 (2011).

    Article  Google Scholar 

  3. C. Chen, Q. Rui, and G. Cheng, Steel Res. Int. 84, 900 (2013).

    Article  Google Scholar 

  4. S.T. Johansen and F. Boysan, Met. Trans. B 19b, 755 (1988).

    Article  Google Scholar 

  5. Y. Xie, S. Orsten, and F. Oeters, ISIJ Int. 32, 66 (1992).

    Article  Google Scholar 

  6. L. Zhang, Model. Simul. Mater. Sci. Eng. 8, 463 (2000).

    Article  Google Scholar 

  7. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw, Prog. Comput. Fluid Dyn. 9, 345 (2009).

    Article  Google Scholar 

  8. L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).

    Article  Google Scholar 

  9. G. Chen, S. He, and Y. Li, Metall. Mater. Trans. B 48, 2176 (2017).

    Article  Google Scholar 

  10. H. Liu, Z. Qi, and M. Xu, Steel Res. Int. 82, 440 (2011).

    Article  Google Scholar 

  11. W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 762 (2013).

    Article  Google Scholar 

  12. W. Lou and M. Zhu, ISIJ Int. 54, 9 (2014).

    Article  Google Scholar 

  13. ANSYS Fluent 17.1, User’s Guide (ANSYS, Inc.)

  14. Q. Cao, A. Pitts, and L. Nastac, Ironmak. Steelmak. (2016). https://doi.org/10.1080/03019233.2016.1262574.

    Article  Google Scholar 

  15. J. Olsen and S. Cloete, in 7th International Conference on CFD in the Minerals and Process Industries, vol. 1 (2009).

  16. J. Xia, T. Ahokainen, and L. Holappa, 2nd International Conference on CFD in the Minerals and Process Industries, vol. 187 (1999).

  17. M. Sano and K. Mori, J. Iron Steel Inst. Jpn. 17, 344 (1975).

    Google Scholar 

  18. P.J. O’Rourke, Collective Drop Effects on Vaporizing Liquid Sprays (Los Alamos: Los Alamos National Lab., 1981).

    Google Scholar 

  19. L.F. Zhang and S. Taniguchi, Int. Mater. Rev. 45, 59 (2000).

    Article  Google Scholar 

  20. M. Sevik and S.H. Park, J. Fluids Eng. 95, 53 (1973).

    Article  Google Scholar 

  21. S.-H. Kim and R.J. Fruehan, Metall. Trans. B 18, 673 (1987).

    Article  Google Scholar 

  22. L. Nastac, D. Zhang, Q. Cao, A. Pitts, and R. Williams, CFD Modeling and Simulation in Materials Processing 2016 (Berlin: Springer, 2016), pp. 187–194.

    Google Scholar 

  23. Q. Cao and L. Nastac, Metall. Mater. Trans. B (2018). https://doi.org/10.1007/s11663-018-1206-y.

    Article  Google Scholar 

  24. Q. Cao and L. Nastac, Ironmak. Steelmak. (2018). https://doi.org/10.1080/03019233.2018.1426697.

    Article  Google Scholar 

  25. Y.Y. Sheng and G.A. Irons, Metall. Mater. Trans. B 26, 625 (1995).

    Article  Google Scholar 

  26. K. Krishnapisharody and G.A. Irons, ISIJ Int. 48, 1807 (2008).

    Article  Google Scholar 

  27. L. Li and B. Li, JOM 68, 2160 (2016).

    Article  Google Scholar 

  28. D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 35, 1 (1995).

    Article  Google Scholar 

  29. J. Aoki, B.G. Thomas, and K.D. Peaslee, in AISTech 2004 Proceedings I, vol. 1045 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Nastac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Nastac, L. Mathematical Modeling of the Multiphase Flow and Mixing Phenomena in a Gas-Stirred Ladle: The Effect of Bubble Expansion. JOM 70, 2071–2081 (2018). https://doi.org/10.1007/s11837-018-2977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2977-y

Navigation