Skip to main content
Log in

Effects of Interphase Forces on Fluid Flow in Gas-Stirred Steel Ladles Using the Eulerian–Lagrangian Multiphase Approach

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The multiphase fluid flow in a gas-stirred system for steelmaking ladles is simulated using an Eulerian–Lagrangian approach. The effects of interphase forces and the bubble-induced turbulence on the fluid flow and the bubble behavior are analyzed by comparing with the measured data. It is found that the drag force strongly affects the velocity field and bubble volume fraction in the plume, but hardly influences the bubble plume shape. The lift force is mainly responsible for the spreading of the bubble plume, and the bubble plume becomes wider as the lift coefficient increases. The virtual mass force has a significant effect on the bubble volume fraction and should be considered reasonable. The pressure gradient force is negligible because it hardly affects the bubble plume dynamic. On increasing the bubble-induced turbulence, the bubble plume becomes wider and the liquid velocity and the bubble volume fraction in bubble plume are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Kim and R. Fruehan, Metall. Trans. B 18, 381 (1987).

    Article  Google Scholar 

  2. S.T. Johansen, D.G.C. Robertson, K. Woje, and T.A. Engh, Metall. Trans. B 19, 745 (1988).

    Article  Google Scholar 

  3. D. Guo and G.A. Irons, Metall. Mater. Trans. B 31, 1447 (2000).

    Article  Google Scholar 

  4. J. Aoki, B. Thomas, J. Peter, and K. Peaslee, Assoc. Iron Steel Technol. 15, 1 (2004).

    Google Scholar 

  5. D. Mazumdar and J.W. Evans, ISIJ Int. 44, 447 (2004).

    Article  Google Scholar 

  6. A. Conejo, S. Kitamura, N. Maruoka, and S. Kim, Metall. Mater. Trans. B 44B, 914 (2013).

    Article  Google Scholar 

  7. Y. Xie and F. Oeters, Steel Res. Int. 63, 93 (1992).

    Article  Google Scholar 

  8. Y. Xie, S. Orsten, and F. Oeters, ISIJ Int. 32, 66 (1992).

    Article  Google Scholar 

  9. D. Mazumdar and R.I.L. Guthrie, Metall. Mater. Trans. B 25, 308 (1994).

    Article  Google Scholar 

  10. D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 34, 384 (1994).

    Article  Google Scholar 

  11. J. Szekely, H. Wang, and K. Kiser, Metall. Trans. B 7, 287 (1976).

    Article  Google Scholar 

  12. T. Roy and A. Majumdar, JOM 33, 42 (1981).

    Google Scholar 

  13. Y. Sahai and R. Guthrie, Metall. Trans. B 13, 193 (1982).

    Article  Google Scholar 

  14. A. Castillejos, M. Salcudean, and J. Brimacombe, Metall. Trans. B 20, 603 (1989).

    Article  Google Scholar 

  15. J. Woo, J. Szekely, A. Castillejos, and J. Brimacombe, Metall. Trans. B 21, 269 (1990).

    Article  Google Scholar 

  16. S. Joo and R.I.L. Guthrie, Metall. Trans. B 23, 765 (1992).

    Article  Google Scholar 

  17. M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao, ISIJ Int. 35, 472 (1995).

    Article  Google Scholar 

  18. M. Zhu, I. Sawada, and N. Yamasaki, ISIJ Int. 36, 503 (1996).

    Article  Google Scholar 

  19. M. Madan, D. Satish, and D. Mazumdar, ISIJ Int. 45, 677 (2005).

    Article  Google Scholar 

  20. H. Turkoglu and B. Farouk, ISIJ Int. 31, 1371 (1991).

    Article  Google Scholar 

  21. L. Zhang, Model. Simul. Mater. Sci. Eng. 8, 463 (2000).

    Article  Google Scholar 

  22. J.L. Xia, T. Ahokainen, and L. Holappa, Scand. J. Metall. 30, 69 (2001).

    Article  Google Scholar 

  23. G. Venturini and M. Goldschmit, Metall. Mater. Trans. B 38, 461 (2007).

    Article  Google Scholar 

  24. B. Li, H. Yin, C. Zhou, and F. Tsukihashi, ISIJ Int. 48, 1704 (2008).

    Article  Google Scholar 

  25. F.P. Maldonado, M.A. Ramirez, A. Conejo, and C. Gonzalez, ISIJ Int. 51, 1110 (2011).

    Article  Google Scholar 

  26. W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 1251 (2013).

    Article  Google Scholar 

  27. S. Johansen and F. Boysan, Metall. Trans. B 19, 755 (1988).

    Article  Google Scholar 

  28. Y. Sheng and G.A. Irons, Metall. Mater. Trans. B 24, 695 (1993).

    Article  Google Scholar 

  29. D. Guo and G. Irons, Metall. Mater. Trans. B 31, 1457 (2000).

    Article  Google Scholar 

  30. J.E. Olsen and S. Cloete, in International Conference on CFD in the Minerals and Process Industries (2009).

  31. H. Liu, Z. Qi, and M. Xu, Steel Res. Int. 82, 440 (2011).

    Article  Google Scholar 

  32. L. Li, Z. Liu, M. Cao, and B. Li, JOM 67, 1459 (2015).

    Article  Google Scholar 

  33. Q. Cao and L. Nastac, Metall. Mater. Trans. B 49, 1388 (2018).

    Article  Google Scholar 

  34. J.F. Davidson and B.O.G. Schüler, Trans. Inst. Chem. Eng. 38, 335 (1960).

    Google Scholar 

  35. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles (New York: Academic Press, 1978).

    Google Scholar 

  36. M. Ishii and N. Zuber, AIChE J. 25, 843 (1979).

    Article  Google Scholar 

  37. J.T. Kuo and G.B. Wallis, Int. J. Multiph. Flow 14, 547 (1988).

    Article  Google Scholar 

  38. A. Tomiyama, I. Kataoka, I. Zun, and T. Sakaguchi, JSME Int. J. Ser. B 41, 472 (1998).

    Article  Google Scholar 

  39. N.I. Kolev, Multiphase Flow Dynamics 2: Thermal and Mechanical Interactions, 2nd ed. (Berlin: Springer, 2005).

    MATH  Google Scholar 

  40. M. Lopez de Bertodano, R.T. Lahey, and O.C. Jones, Int. J. Multiph. Flow 20, 805 (1994).

    Article  Google Scholar 

  41. Y. Sheng and G.A. Irons, Metall. Mater. Trans. B 26, 625 (1995).

    Article  Google Scholar 

  42. M. Pourtousi, J.N. Sahu, and P. Ganesan, Chem. Eng. Process. 75, 38 (2014).

    Article  Google Scholar 

  43. C. Mendez, N. Nigro, and A. Cardona, J. Mater. Process. Technol. 160, 296 (2005).

    Article  Google Scholar 

  44. Z. Li, J. Wei, and B. Yu, Int. J. Multiph. Flow 88, 11 (2017).

    Article  MathSciNet  Google Scholar 

  45. V. Armenio and V. Fiorotto, Phys. Fluids 13, 2437 (2001).

    Article  Google Scholar 

  46. T.G. Theofanous and J. Sullivan, J. Fluid Mech. 116, 343 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1, FRF-TP-17-039A1 and FRF-BD-17-010A), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Ren, Y. & Zhang, L. Effects of Interphase Forces on Fluid Flow in Gas-Stirred Steel Ladles Using the Eulerian–Lagrangian Multiphase Approach. JOM 70, 2128–2138 (2018). https://doi.org/10.1007/s11837-018-3045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3045-3

Navigation