Skip to main content
Log in

Thermally-Sprayed WC-Based Cermet Coatings for Corrosion Resistance Applications

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermally-sprayed tungsten carbide (WC)-based cermet coatings have been widely used for a large variety of wear resistance applications. More recently, these coatings are being used as an alternative to hard chrome plating, especially in the aerospace and automotive industries. Utilizing the automated spray systems and the commercial availability of spray grade powders with different compositions, the WC-based cermet coatings that are conventionally used for wear protection are now being extended for simultaneous corrosion protection. Therefore, the corrosion behavior of various WC-based cermet coatings as a function of matrix composition, feedstock type and deposition technique exposed to a variety of corrosion mediums has been critically reviewed. The corrosion mechanisms of WC-based cermet coatings studied using various analytical tools have also been comprehensively discussed. The interrelationship between the microstructural integrity and the corrosion behavior has been critically assessed. Further, the influence of pre- and post-treatments to improve the overall corrosion resistance of the coatings has also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Open access Ref. 12)

Fig. 2

(Reprinted with permission from Ref. 17)

Fig. 3

(Reprinted with permission from Refs. 13 and 53)

Fig. 4

(Reprinted with permission from Refs. 18, 22, 48, and 57)

Fig. 5
Fig. 6

(Reprinted with permission from Refs. 59 and 60)

Fig. 7

(Reprinted with permission from Ref. 70)

Fig. 8

(Reprinted with permission from Ref. 72)

Fig. 9

Similar content being viewed by others

References

  1. J.R. Davis, Handbook of Thermal Spray Technology (Ohio: ASM International, Materials Park, 2004).

    Google Scholar 

  2. P.L. Fauchais, J.V. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals (New York: Springer, 2014).

    Book  Google Scholar 

  3. D.S. Rao, L.R. Krishna, and G. Sundararajan, Aerospace Materials and Material Technologies. Indian Institute of Metals Series, ed. N. Prasad and R. Wanhill (New York: Springer, 2017), p. 483.

    Chapter  Google Scholar 

  4. M. Magnani, P.H. Suegama, N. Espallargas, S. Dosta, C.S. Fugivara, J.M. Guilemany, and A.V. Benedetti, Surf. Coat. Technol. 202, 4746 (2008).

    Article  Google Scholar 

  5. A.C. Bozzi and J.D.B. de Mello, Wear 233–235, 575 (1999).

    Article  Google Scholar 

  6. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Wear 225–229, 789 (1999).

    Article  Google Scholar 

  7. H. Liao, B. Normand, and C. Coddet, Surf. Coat. Technol. 124, 235 (2000).

    Article  Google Scholar 

  8. P.S. Babu, B. Basu, and G. Sundararajan, Wear 268, 1387 (2010).

    Article  Google Scholar 

  9. P.S. Babu, B. Basu, and G. Sundararajan, Wear 270, 903 (2011).

    Article  Google Scholar 

  10. P. Kulu, I. Hussainova, and R. Veinthal, Wear 258, 488 (2005).

    Article  Google Scholar 

  11. Q. Wang, Z.H. Chen, Z.X. Ding, and Z.L. Liu, Proceedings of 2nd International NanoElectronics Conference on INEC-2008, IEEE Xplore, Shanghai, 24–27 Mar 2008, p. 340. https://doi.org/10.1109/inec.2008.4585500.

  12. B.D. Sartwell, HVOF Thermal Spray Coatings as an Alternative to Hard Chrome Plating on Military and Commercial Aircraft. Final Report, NRL, Washington, 2004. https://pdfs.semanticscholar.org/0b94/84e5171db79a84d22917deb464ce278449c1.pdf. Accessed Dec 2017.

  13. A. Aguero, F. Camon, J.G. de Blas, J.C. del Hoyo, R. Muelas, A. Santaballa, S. Ulargui, and P. Valles, J. Therm. Spray Technol. 20, 1292 (2011).

    Article  Google Scholar 

  14. M.P. Nascimento, R.C. Souza, I.M. Miguel, W.L. Pigatin, and H.J.C. Voorwald, Surf. Coat. Technol. 138, 113 (2001).

    Article  Google Scholar 

  15. C. Verdon, A. Karimi, and J.L. Martin, Mater. Sci. Eng. A 246A, 11 (1998).

    Article  Google Scholar 

  16. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Acta Mater. 48, 1593 (2000).

    Article  Google Scholar 

  17. P.S. Babu, B. Basu, and G. Sundararajan, Acta Mater. 56, 5012 (2008).

    Article  Google Scholar 

  18. J.E. Cho, S.Y. Hwang, and K.Y. Kim, Surf. Coat. Technol. 200, 2653 (2006).

    Article  Google Scholar 

  19. L.M. Berger, S. Saaro, T. Naumann, M. Wiener, V. Weihnacht, S. Thiele, and J. Suchanek, Surf. Coat. Technol. 202, 4417 (2008).

    Article  Google Scholar 

  20. G. Bolelli, L.M. Berger, M. Bonetti, and L. Lusvarghi, Wear 309, 96 (2014).

    Article  Google Scholar 

  21. J.F. Pelton and J.M. Koffskey Jr., Process of flame spraying a tungsten carbide-chromium carbide-nickel coating and article produced thereby. U.S. Patent 3071489 (1963).

  22. P.S. Babu, P.C. Rao, A. Jyothimayi, P.S. Phani, L.R. Krishna, and D.S. Rao, Surf. Coat. Technol. 335, 345 (2018).

    Article  Google Scholar 

  23. T. Itsukaichi and S. Osawa, Proceedings of International Thermal Spray Conference-2003, Orlando, FL, 5–8 May 2003, ed. B.R. Marple, C. Moreau, (Ohio, OH: ASM International, Materials Park; 2003), p. 237.

  24. L.M. Berger, Powder Metall. 50, 205 (2007).

    Article  Google Scholar 

  25. L.M. Berger, Int. J. Refract. Met. Hard Mater. 49, 350 (2015).

    Article  Google Scholar 

  26. S. Zimmermann, H. Keller, and G. Schwier, Proceedings of International Thermal Spray Conference-2003, Orlando, FL, 5–8 May 2003, ed. B.R. Marple and C. Moreau (Ohio, OH: ASM International, Materials Park; 2003), p. 227.

  27. R.J.K. Wood, S. Herd, and M.R. Thakare, Tribol. Int. 119, 491 (2018).

    Article  Google Scholar 

  28. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings (Chichester: Wiley, 1995).

    Google Scholar 

  29. R.J.K. Wood, Int. J. Refract. Met. Hard Mater. 28, 82 (2010).

    Article  Google Scholar 

  30. P.S. Babu, D.S. Rao, G.V.N. Rao, and G. Sundararajan, J. Therm. Spray Technol. 16, 281 (2007).

    Article  Google Scholar 

  31. G. Sundararajan, D. Sen, and G. Sivakumar, Wear 258, 377 (2005).

    Article  Google Scholar 

  32. H.L.D.V. Lovelock, J. Therm. Spray Technol. 7, 357 (1998).

    Article  Google Scholar 

  33. M.E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, J. Vac. Sci. Technol. A 3A, 2483 (1985).

    Article  Google Scholar 

  34. J.R. Fincke, W.D. Swank, and D.C. Haggard, Proceedings of the 7th National Thermal Spray Conference-1994, Boston, MA, 20–24 June 1994 (Ohio, OH: ASM International, Materials Park; 1994), p. 325.

  35. D. Tu, S. Chang, C. Chao, and C. Lin, J. Vac. Sci. Technol. A 3A, 2479 (1985).

    Article  Google Scholar 

  36. B.H. Kear, G. Skandan, and R.K. Sadangi, Scr. Mater. 44, 1703 (2001).

    Article  Google Scholar 

  37. G. Sundararajan and P. Suresh Babu, Trans. IIM 62, 95 (2009).

    Google Scholar 

  38. S. Hong, Y. Wu, Y. Zheng, B. Wang, W. Gao, G. Li, G. Ying, and J. Lin, J. Mater. Eng. Perform. 23, 1434 (2014).

    Article  Google Scholar 

  39. M.F. Morks, Y. Gao, N.F. Fahim, and F.U. Yingqing, Mater. Lett. 60, 1049 (2006).

    Article  Google Scholar 

  40. M. Couto, S. Dosta, J. Fernandez, and J.M. Guilemany, J. Therm. Spray Technol. 23, 1251 (2014).

    Article  Google Scholar 

  41. M. Couto, S. Dosta, and J.M. Guilemany, Surf. Coat. Technol. 268, 180 (2015).

    Article  Google Scholar 

  42. H. Myalska, J.K. Michalska, G. Moskal, and K. Szymanski, Surf. Coat. Technol. 318, 270 (2017).

    Article  Google Scholar 

  43. G.C. Saha, T.I. Khan, and G.A. Zhang, Corr. Sci. 53, 2106 (2011).

    Article  Google Scholar 

  44. M.R.S. Beyragh, S.K. Asl, R. Vasfpour, F. Tazesh, and P. Khallagi, Mater. Sci. Forum 673, 173 (2011).

    Article  Google Scholar 

  45. Z. Kamdi, C.Y. Phang, and H. Ahmad, Mater. Sci. Forum 819, 87 (2015).

    Article  Google Scholar 

  46. B. Janette, G. Anna, D. Dagmar, and B. Jozef, Mater. Sci. Forum 811, 63 (2015).

    Google Scholar 

  47. Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, and G. Yang, Surf. Coat. Technol. 218, 127 (2013).

    Article  Google Scholar 

  48. X. Ding, X.D. Cheng, C. Li, X. Yu, Z.X. Ding, and C.Q. Yuan, Int. J. Adv. Manuf. Technol. 96, 1625 (2018).

    Article  Google Scholar 

  49. J.A. Picas, E. Ruperez, M. Punset, and A. Forn, Surf. Coat. Technol. 225, 47 (2013).

    Article  Google Scholar 

  50. D. Utu, L. Hulka, V.A. Serban, and H. Flipescu, Proceedings of the NANOCON, 2012, Brno, Czech Republic, EU, 23–25 Oct 2012.

  51. P.K. Aw, A.L.K. Tan, T.P. Tan, and J. Qiu, Thin Solid Films 516, 5710 (2008).

    Article  Google Scholar 

  52. Y.S. Hui, S.Y. Liang, S.H. Yu, Y.Z. Ling, and L.Y. Chen, Key Eng. Mater. 739, 120 (2017).

    Article  Google Scholar 

  53. H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, and M.O.H. Cioffi, Surf. Coat. Technol. 190, 155 (2005).

    Article  Google Scholar 

  54. L.M. Berger, S. Saaro, T. Naumann, M. Kasparova, and F. Zahalka, Surf. Coat. Technol. 205, 1080 (2010).

    Article  Google Scholar 

  55. G. Hou, Y. An, G. Liu, H. Zhou, J. Chen, and Z. Chen, J. Therm. Spray Technol. 20, 1150 (2011).

    Article  Google Scholar 

  56. P. Fauchais and A. Vardelle, Thermal sprayed coatings used against corrosion and corrosive wear. Advanced Plasma Spray Applications, ed. H.S. Jazi. ISBN 978-953-51-0349-3 (2012).

    Google Scholar 

  57. L.J. Wang, P.X. Qiu, Y. Liu, W.X. Zhou, G.Q. Gou, and H. Chen, Trans. Nonferrous Met. Soc. China 23, 2611 (2013).

    Article  Google Scholar 

  58. M. Takeda, N. Morihiro, R. Ebara, Y. Harada, R. Wang, and M. Kido, Mater. Trans. 43, 2860 (2002).

    Article  Google Scholar 

  59. J.M. Perry, A. Neville, and T. Hodgkiess, J. Therm. Spray Technol. 11, 536 (2002).

    Article  Google Scholar 

  60. V.A.D. Souza and A. Neville, Mater. Sci. Eng. A 352A, 202 (2003).

    Article  Google Scholar 

  61. M.S. Han, S.J. Lee, M.S. Kim, S.K. Jang, and S.J. Kim, Trans. Nonferrous Met. Soc. China 22, s753 (2012).

    Article  Google Scholar 

  62. A. Neville and T. Hodgkiess, Surf. Eng. 12, 303 (1996).

    Article  Google Scholar 

  63. P.M. Natishan, S.H. Lawrence, R.L. Foster, J. Lewis, and B.D. Sartwell, Surf. Coat. Technol. 130, 218 (2000).

    Article  Google Scholar 

  64. A.C. Murariu, N. Plesu, I.A. Perianu, and M.T.L. Mihali, Int. J. Electrochem. Sci. 12, 1535 (2017).

    Article  Google Scholar 

  65. J.M. Guilemany, S. Dosta, and J.R. Miguel, Surf. Coat. Technol. 201, 1180 (2006).

    Article  Google Scholar 

  66. J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, J. Therm. Spray Technol. 14, 405 (2005).

    Article  Google Scholar 

  67. P.L. Cabot, J. Fernandez, and J.M. Guilemany, Mater. Sci. Forum 289–292, 667 (1998).

    Article  Google Scholar 

  68. S. Brioua, K. Belmokre, V. Debout, P. Jacquot, E. Conforto, S. Touzain, and J. Creus, J. Solid State Electrochem. 16, 633 (2012).

    Article  Google Scholar 

  69. V.A.D. Souza and A. Neville, J. Therm. Spray Technol. 15, 106 (2006).

    Article  Google Scholar 

  70. A.J. Lopez and J. Rams, Surf. Coat. Technol. 262, 123–133 (2015).

    Article  Google Scholar 

  71. B. Somasundaram, K.R. Kiran, and M.R. Ramesh, J. Therm. Spray Technol. 23, 1000 (2014).

    Article  Google Scholar 

  72. H. Singh, M. Kaur, and S. Prakash, J. Therm. Spray Technol. 25, 1192 (2016).

    Article  Google Scholar 

  73. S. Armada, B.G. Tilset, M. Pilz, R. Liltvedt, H. Bratland, and N. Espallargas, J. Therm. Spray Technol. 20, 918 (2011).

    Article  Google Scholar 

  74. C. Godoy, M.M. Lima, M.M.R. Castro, and J.C.A. Batista, Surf. Coat. Technol. 188–189, 1 (2004).

    Article  Google Scholar 

  75. K.R.R.M. Reddy, N. Ramanaiah, and M.M.M. Sarcar, J. King Saud Univ. Eng. Sci. 29, 84 (2017).

    Article  Google Scholar 

  76. S.K. Asl, M.R.S. Beyragh, and N.F. Noori, Adv. Sci. Technol. 64, 13 (2011).

    Google Scholar 

  77. S.H. Zhang, T.Y. Cho, J.H. Yoon, M.X. Li, P.W. Shum, and S.C. Kwon, Mater. Sci. Eng. B 162B, 127 (2009).

    Article  Google Scholar 

  78. S. Nirmala, G. Sivakumar, A.S. Joshi, N. Aruna, D.S. Rao, and G. Sundararrajan, J. Sci. Ind. Res. 72, 477 (2013).

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Director, ARCI, for permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suresh Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Babu, P., Madhavi, Y., Rama Krishna, L. et al. Thermally-Sprayed WC-Based Cermet Coatings for Corrosion Resistance Applications. JOM 70, 2636–2649 (2018). https://doi.org/10.1007/s11837-018-3131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3131-6

Navigation