Skip to main content
Log in

Dynamic Recrystallization-Related Interface Phase Boundary Migration of TC17/TC4 Bond with Initial Equiaxed Microstructure

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The phase, grain, orientation and local misorientation in the bonding interface of a TC17/TC4 bond at different bonding times were carefully investigated via electron backscatter diffraction technique. Dynamic recrystallization (DRX) occurred in the primary α (αp)-enriched region of the TC4 side, in which large αp grains of the TC4 side transformed into small recrystallized α grains with random orientation. With the increasing of bonding time, DRX in the αp-enriched region of the TC4 side was more evident and the recrystallized α grains grew. The stored energy difference between the recrystallized α grains of the TC4 side and the β grains/subgrains of the TC17 side provided the driving force for the migration of the interface phase boundary (IPB). In addition, the migration of IPB was promoted as the bonding time increased, which was due to the synergistic effect of the increase in the stored energy difference and the growth of the recrystallized α grains of the TC4 side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Li, C. Yang, L.X. Sun, and M.Q. Li, J. Alloy. Compd. 720, 131 (2017).

    Article  Google Scholar 

  2. M.S. Kenevisi, S.M. Khoie, and M. Alaei, Mech. Mater. 64, 69 (2013).

    Article  Google Scholar 

  3. K. Aydin, Y. Kaya, and N. Kahraman, Mater. Des. 37, 356 (2012).

    Article  Google Scholar 

  4. S. Noh, R. Kasada, and A. Kimura, Acta Mater. 59, 3196 (2011).

    Article  Google Scholar 

  5. D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  6. S.J. Tuppen, M.R. Bache, and W.E. Voice, Int. J. Fatigue 27, 651 (2005).

    Article  Google Scholar 

  7. H. Li, H.B. Liu, and M.Q. Li, Mater. Lett. 108, 212 (2013).

    Article  Google Scholar 

  8. L.X. Sun, M.Q. Li, and H. Li, J. Mater. Sci. 53, 5380 (2018).

    Article  Google Scholar 

  9. C. Zhang, H. Li, and M.Q. Li, Sci. Technol. Weld. Join. 20, 115 (2015).

    Article  Google Scholar 

  10. D. Herrmann and F. Appel, Metall. Mater. Trans. A 40A, 1881 (2009).

    Article  Google Scholar 

  11. B. Tang, X.S. Qi, H.C. Kou, J.S. Li, and S. Milenkovic, Adv. Eng. Mater. 18, 657 (2016).

    Article  Google Scholar 

  12. Y. Huang, N. Ridley, F.J. Humphreys, and J.Z. Cui, Mater. Sci. Eng. A 266, 295 (1999).

    Article  Google Scholar 

  13. F.J. Gil and J.A. Planell, Mater. Sci. Eng. A 283, 17 (2000).

    Article  Google Scholar 

  14. D.G. Gram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, and C.R. Hutchinson, Acta Mater. 60, 6390 (2012).

    Article  Google Scholar 

  15. R. Kappor, G. Bharat Reddy, and A. Sarkar, Mater. Sci. Eng. A 718, 104 (2018).

    Article  Google Scholar 

  16. K. Huang and R.E. Logé, Mater. Des. 111, 548 (2016).

    Article  Google Scholar 

  17. J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, and J.T. Wang, Acta Mater. 79, 47 (2014).

    Article  Google Scholar 

  18. S.L. Semiatin and D.U. Furrer, Modeling of microstructure evolution during the thermomechanical processing of titanium alloys.Fundamentals of Modeling for Metals Processing, ed. S.L. Semiatin and D.U. Furrer (Ohio, NY: ASM International, 2009), p. 536.

    Google Scholar 

  19. T. Saki, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater Sci. 60, 130 (2014).

    Article  Google Scholar 

  20. L. Li, M.Q. Li, and J. Luo, Acta Mater. 94, 36 (2015).

    Article  Google Scholar 

  21. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford, NY: Elsevier, 2004), pp. 178–185.

    Google Scholar 

  22. O. Engler and V. Randle, Introduction to Texture Analysis, 2nd ed. (Florida, NY: CRC Press, 2010), pp. 148–153.

    Google Scholar 

  23. C. Zhang, H. Li, and M.Q. Li, Appl. Surf. Sci. 371, 407 (2016).

    Article  Google Scholar 

  24. N. Orhan, M. Aksoy, and M. Eroglu, Mater. Sci. Eng. A 271, 458 (1999).

    Article  Google Scholar 

  25. R.F. Ma, M.Q. Li, H. Li, and W.X. Yu, Sci. China Technol. Sci. 55, 2420 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

This project is supported by National Natural Science Foundation of China (Grant Nos. 51475375 and 51505386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoquan Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, M. & Li, H. Dynamic Recrystallization-Related Interface Phase Boundary Migration of TC17/TC4 Bond with Initial Equiaxed Microstructure. JOM 71, 2253–2261 (2019). https://doi.org/10.1007/s11837-019-03429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03429-4

Navigation