Skip to main content
Log in

Evolution and Distribution of Geometrically Necessary Dislocations for TA15 Titanium Alloy Sheets During the Hot Tensile Process

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A thorough understanding of the behavior of geometrically necessary dislocations (GNDs) for titanium alloys during the thermo-mechanical process is very important for effectively guiding the forming process and controlling the property of finial products. The current work seeks to provide valuable insights into the evolution and distribution of GNDs for TA15 titanium alloy sheet during the hot tensile process through the experimental study and numerical simulation. Based on EBSD analyses, the overall GND densities increased with the imposed macroscopic strain and saturated after a true strain of 0.4. A modified model for the prediction of average GND density with the imposed strain was proposed according to the mixed mechanism of texture, crystalline orientation, grain size, dynamic restoration and imposed strain. Moreover, GNDs were commonly distributed near grain boundaries, and some band-liked GND structures took triple junctions as starting points and extended linearly into grains nearly along a 45° angle toward the tensile direction. According to the result of a crystal plasticity finite element model, the mechanism of GND distribution was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Kong, G. Liu, D. Wang, K. Wang, and S. Yuan, Mater. Des. 723, 90 (2016).

    Google Scholar 

  2. K. Wang, G. Liu, J. Zhao, J. Wang, and S. Yuan, Mater. Des. 269, 91 (2016).

    Google Scholar 

  3. M.F. Ashby, Philos. Mag. 399, 21 (1970).

    Google Scholar 

  4. P.D. Littlewood, T.B. Britton, and A.J. Wilkinson, Acta Mater. 6489, 59 (2011).

    Google Scholar 

  5. Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Science, 362 (2018).

  6. J. Jiang, T.B. Britton, and A.J. Wilkinson, Int. J. Plast. 102, 69 (2015).

    Google Scholar 

  7. G. Liu, K. Wang, B. He, M. Huang, and S. Yuan, Mater. Des. 146, 86 (2015).

    Google Scholar 

  8. J.W. Kysar, Y. Saito, M.S. Oztop, D. Lee, and W.T. Huh, Int. J. Plast 1097, 26 (2010).

    Google Scholar 

  9. C.F.O. Dahlberg, Y. Saito, M.S. Öztop, and J.W. Kysar, Int. J. Plast. 81, 54 (2014).

    Google Scholar 

  10. T.J. Ruggles, D.T. Fullwood, and J.W. Kysar, Int. J. Plast 231, 76 (2016).

    Google Scholar 

  11. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, and Y. Zhu, Acta Mater. 43, 116 (2016).

    Google Scholar 

  12. A. Kundu and D.P. Field, Mater. Sci. Eng. A 435, 667 (2016).

    Google Scholar 

  13. E.A. Bonifaz and N.L. Richards, Int. J. Plast 289, 24 (2008).

    Google Scholar 

  14. C. Zheng, L. Li, Y. Wang, W. Yang, and Z. Sun, Mater. Sci. Eng. A 181, 631 (2015).

    Google Scholar 

  15. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, J. Mech. Phys. Solids 1239, 47 (1999).

    Google Scholar 

  16. F.P.E. Dunne, D. Rugg, and A. Walker, Int. J. Plast 1061, 23 (2007).

    Google Scholar 

  17. T.B. Britton, H. Liang, F.P.E. Dunne, and A.J. Wilkinson, Proc. R. Soc. A Math. Phys. Eng. Sci. 695, 466 (2009).

    Google Scholar 

  18. J. Zhao, L. Lv, G. Liu, and K. Wang, Mater. Sci. Eng. A 30, 707 (2017).

    Google Scholar 

  19. B. He, W. Xu, and M. Huang, J. Mater. Sci. Technol. 1494, 33 (2017).

    Google Scholar 

  20. D.A. Hughes, N. Hansen, and D.J. Bammann, Scr. Mater. 147, 48 (2003).

    Google Scholar 

  21. L.P. Kubin and A. Mortensen, Scr. Mater. 119, 48 (2003).

    Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 2738, 527 (2010).

    Google Scholar 

  23. B.L. Adams and J. Kacher, Comput. Mat. Contin. 185, 14 (2009).

    Google Scholar 

  24. C. Zhu, T. Harrington, V. Livescu, G.T. Gray, and K.S. Vecchio, Acta Mater. 383, 118 (2016).

    Google Scholar 

  25. J. Zhao, L. Lv, and G. Liu, Proc. Eng. 2179, 207 (2017).

    Google Scholar 

  26. E.P. Busso, F.T. Meissonnier, and N.P. O’Dowd, J. Mech. Phys. Solids 2333, 48 (2000).

    Google Scholar 

  27. K.S. Cheong and E.P. Busso, Acta Mater. 5665, 52 (2004).

    Google Scholar 

  28. C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe, Acta Mater. 333, 71 (2014).

    Google Scholar 

  29. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp, Acta Mater. 7555, 61 (2013).

    Google Scholar 

  30. D. He, J.-C. Zhu, Z.-H. Lai, Y. Liu, X.-W. Yang, and Z.-S. Nong, Trans. Nonferr. Metals Soc. China 7, 23 (2013).

    Google Scholar 

  31. H. Li, C. Wu, and H. Yang, Int. J. Plast 271, 51 (2013).

    Google Scholar 

  32. E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, and K. Inal, Int. J. Plast 85, 66 (2015).

    Google Scholar 

  33. H. Li, D. Huang, M. Zhan, Y. Li, X. Wang, and S. Chen, Comput. Mater. Sci. 159, 140 (2017).

    Google Scholar 

  34. S. Birosca, F. Di Gioacchino, S. Stekovic, and M. Hardy, Acta Mater. 110, 74 (2014).

    Google Scholar 

  35. L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, Acta Mater. 1782, 58 (2010).

    Google Scholar 

  36. L.S. Toth, C.F. Gu, B. Beausir, J.J. Fundenberger, and M. Hoffman, Acta Mater. 35, 117 (2016).

  37. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 1152, 58 (2010).

    Google Scholar 

  38. D. Zhang and S. Li, J. Mater. Sci. Technol. 175, 27 (2011).

    Google Scholar 

  39. P. Lin, A. Feng, S. Yuan, G. Li, and J. Shen, Mater. Sci. Eng. A 16, 563 (2013).

    Google Scholar 

  40. J.F. Zhang, X.X. Zhang, Q.Z. Wang, B.L. Xiao, and Z.Y. Ma, J. Mater. Sci. Technol. 627, 34 (2018).

    Google Scholar 

  41. H. Masuda, H. Tobe, E. Sato, Y. Sugino, and S. Ukai, Acta Mater. 205, 120 (2016).

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by High-level Personnel of Special Support Program (No. W02020239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, K., Lv, L. et al. Evolution and Distribution of Geometrically Necessary Dislocations for TA15 Titanium Alloy Sheets During the Hot Tensile Process. JOM 71, 2303–2312 (2019). https://doi.org/10.1007/s11837-019-03490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03490-z

Navigation