Skip to main content
Log in

Facile Preparation of Self-Reducible Cu Nanoparticle Paste for Low Temperature Cu-Cu Bonding

  • Advanced Electronic Interconnection
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cu nanoparticle (NP) paste is considered the next-generation die-attach material because of its cost-effectiveness and high conductivity and electro-migration resistance. However, the spontaneous oxidation of Cu NPs severely restrains the incorporation of Cu NP paste into practical applications. Herein, a novel self-reducible Cu NP paste was prepared and demonstrated for low-temperature Cu-Cu bonding. The Cu NP paste was composed of 62 wt.% ultra-small Cu NPs (6.5 nm) and 38 wt.% organic components [isopropanolamine (IPA) stabilizer and ethylene glycol]. The reducing and sintering mechanisms of Cu NP paste were proposed, and the effects of sintering temperature on the mechanical properties and microstructure evolutions of Cu-Cu joints were systematically investigated. Consequently, the reducibility of the IPA stabilizer was beneficial for eliminating the surface oxides and enhancing the sinterability of Cu NPs, and the robust and high-strength Cu-Cu joints (> 20 MPa) were achieved at low temperature of 200°C in Ar atmosphere. Furthermore, the microstructure observations reveal that the robust bonding is attributed to the remarkable metallurgical interconnection between the substrates and sintered Cu NP layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.N. Tu and T. Tian, Sci. China Technol. Sci. 56, 1740 (2013).

    Article  Google Scholar 

  2. F.X. Che, X. Zhang, and J.K. Lin, Microelectron. Reliab. 61, 64 (2016).

    Article  Google Scholar 

  3. J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, T. Li, G. Liao, and Z. Tang, J. Alloys Compd. 709, 700 (2017).

    Article  Google Scholar 

  4. Y.C. Liu, J.W.R. Teo, S.K. Tung, and K.H. Lam, J. Alloys Compd. 448, 340 (2018).

    Article  Google Scholar 

  5. A. Kirubanandham, I. Lujan-Regalado, R. Vallabhaneni, and N. Chawla, JOM 68, 2879 (2016).

    Article  Google Scholar 

  6. X. Liu, S. He, and H. Nishikawa, J. Alloys Compd. 695, 2165 (2017).

    Article  Google Scholar 

  7. Y. Peng, Y. Mou, Y. Zhuo, H. Li, X. Wang, M. Chen, and X. Luo, J. Alloys Compd. 768, 114 (2018).

    Article  Google Scholar 

  8. R.J. Coyle, K. Sweatman, and B. Arfaei, JOM 69, 1244 (2017).

    Article  Google Scholar 

  9. H. Chen, T. Hu, M. Li, and Z. Zhao, IEEE Trans. Power Electron. 32, 441 (2017).

    Article  Google Scholar 

  10. S. Lin, H. Chang, C. Cho, Y. Liu, and Y. Kuo, Electron. Mater. Lett. 11, 687 (2015).

    Article  Google Scholar 

  11. S. Lin, M. Wang, C. Yeh, H. Chang, and Y. Liu, J. Alloys Compd. 702, 561 (2017).

    Article  Google Scholar 

  12. S. Lin, C. Cho, and H. Chang, J. Electron. Mater. 43, 204 (2014).

    Article  Google Scholar 

  13. S. Lin, C. Yeh, and M. Wang, Mater. Charact. 137, 14 (2018).

    Article  Google Scholar 

  14. K.S. Siow, J. Alloys Compd. 514, 6 (2012).

    Article  Google Scholar 

  15. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 977, 153117 (2010).

    Article  Google Scholar 

  16. E. Ide, S. Angata, A. Hiros, and K. Kobayashi, Acta Mater. 53, 2385 (2005).

    Article  Google Scholar 

  17. X. Si, J. Cao, S. Liu, X. Song, J. Qi, Y. Huang, and J. Feng, Int. J. Hydrog. Energy 43, 2977 (2018).

    Article  Google Scholar 

  18. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015).

    Article  Google Scholar 

  19. S. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y. Liu, S. Lin, and K. Suganuma, Sci. Rep. 6, 34769 (2016).

    Article  Google Scholar 

  20. J.J. Li, C.L. Cheng, T.L. Shi, J.H. Fan, X. Yu, S.Y. Cheng, G.L. Liao, and Z.R. Tang, Mater. Lett. 184, 193 (2016).

    Article  Google Scholar 

  21. Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Int. J. Adhes. Adhes. 33, 50 (2012).

    Article  Google Scholar 

  22. J. Yan, G. Zou, A. Hu, and Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011).

    Article  Google Scholar 

  23. Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Solid State Sci. 13, 553 (2011).

    Article  Google Scholar 

  24. M. Biçer and İ. Şişman, Powder Technol. 198, 279 (2010).

    Article  Google Scholar 

  25. Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, and C. Wang, RSC Adv. 6, 91783 (2016).

    Article  Google Scholar 

  26. Y. Liang, H. Hou, Y. Yang, H. Glicksman, and S. Ehrman, ACS Appl. Mater. Interfaces 9, 34587 (2017).

    Article  Google Scholar 

  27. N.A. Luechinger, E.K. Athanassiou, and W.J. Stark, Nanotechnology 19, 445201 (2008).

    Article  Google Scholar 

  28. T. Hu, H. Chen, C. Wang, M. Huang, and F. Zhao, Surf. Coat. Technol. 319, 230 (2017).

    Article  Google Scholar 

  29. K. Woo, Y. Kim, B. Lee, J. Kim, and J. Moon, ACS Appl. Mater. Interfaces 3, 2377 (2011).

    Article  Google Scholar 

  30. I. Kim and J. Kim, J. Appl. Phys. 108, 102807 (2010).

    Article  Google Scholar 

  31. J. Liu, H. Chen, H. Ji, and M. Li, ACS Appl. Mater. Interfaces 8, 33289 (2016).

    Article  Google Scholar 

  32. Y. Mou, Y. Peng, Y. Zhang, H. Cheng, and M. Chen, Mater. Lett. 227, 179 (2018).

    Article  Google Scholar 

  33. T. Fujimoto, T. Ogura, T. Sano, M. Takahashi, and A. Hirose, Mater. Trans. 56, 992 (2015).

    Article  Google Scholar 

  34. Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, and H. Kawasaki, ACS Appl. Mater. Interfaces 7, 19382 (2015).

    Article  Google Scholar 

  35. J. Lee, J. Jun, W. Na, J. Oh, Y. Kim, W. Kim, and J. Jang, J. Mater. Chem. C 5, 12507 (2017).

    Article  Google Scholar 

  36. C.C. Li, C.K. Chung, W.L. Shih, and C.R. Kao, Metall. Mater. Trans. A 45, 2343 (2014).

    Article  Google Scholar 

  37. G.S. Wable, S. Chada, B. Neal, and R.A. Fournelle, JOM 57, 38 (2005).

    Article  Google Scholar 

  38. Y. Mou, H. Cheng, Y. Peng, and M. Chen, Mater. Lett. 229, 353 (2018).

    Article  Google Scholar 

  39. J. Li, Q. Liang, T. Shi, J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, and Z. Tang, J. Alloys Compd. 772, 793 (2019).

    Article  Google Scholar 

  40. C.C. Yang and Y.W. Mai, Mater. Sci. Eng. R. Rep. 79, 1 (2014).

    Article  Google Scholar 

  41. J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).

    Article  Google Scholar 

  42. J. Mittal and K.-L. Lin, Mater. Charact. 109, 19 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the financial support from the National Natural Science Foundation of China (NFSC, 51275194, and 51775219), the Fundamental Research Funds for Central Universities (2016JCTD112 and 2017JYCXJJ006), and the Graduates’ Innovation Fund, Huazhong University of Science and Technology. Thanks to the Analytical and Testing Center of Huazhong University of Science and Technology for the support with TEM, FT-IR, and SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiang Chen.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, Y., Liu, J., Cheng, H. et al. Facile Preparation of Self-Reducible Cu Nanoparticle Paste for Low Temperature Cu-Cu Bonding. JOM 71, 3076–3083 (2019). https://doi.org/10.1007/s11837-019-03517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03517-5

Navigation