Skip to main content
Log in

Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF3)

  • ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metal fused filament fabrication (MF3) combines fused filament fabrication and sintering processes to fabricate complex metal components. In MF3, powder-polymer mixtures are printed to produce green parts that are subsequently debound and sintered. In the design for MF3 (DfMF3), it is important to understand how material properties of the filament affect processability, part quality, and ensuing properties. However, the materials property database of powder-polymer materials to perform DfMF3 simulations is very limited, and experimental measurements can be expensive and time-consuming. This work investigates models that can predict the powder-polymer material properties that are required as input parameters for simulating the MF3 using the Digimat-AM® process design platform for fused filament fabrication. Ti-6Al-4V alloy (56–60 vol.%) and a multicomponent polymer binder were used to predict properties such as density, specific heat, thermal conductivity, Young’s modulus, and viscosity. The estimated material properties were used to conduct DfMF3 simulations to understand material-processing-geometry interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, Materials 11, 840 (2018).

    Google Scholar 

  2. R.M. German, Injection molding of metals and ceramics, 1st ed. (Princeton: Metal Powder Industries Federation, 1997), pp. 83–98.

    Google Scholar 

  3. S. Rangarajan, G. Qi, N. Venkataraman, A. Safari, and S.C. Danforth, J. Am. Ceram. Soc. 83, 1663 (2000).

    Google Scholar 

  4. G. Wu, N.A. Langrana, R. Sadanji, and S. Danforth, Mater. Des. 23, 97 (2002).

    Google Scholar 

  5. W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, C. Kukla, M. Kitzmantel, E. Neubauer, and C. Lieberwirth, Int. J. Refract. Met. Hard Mater. 82, 141 (2019).

    Google Scholar 

  6. S. Masood and W. Song, Mater. Des. 25, 587 (2004).

    Google Scholar 

  7. M. Nikzad, S. Masood, and I. Sbarski, Mater. Des. 32, 3448 (2011).

    Google Scholar 

  8. D.A. Anderegg, H.A. Bryant, D.C. Ruffin, S.M. Skrip Jr, J.J. Fallon, E.L. Gilmer, and M.J. Bortner, Addit. Manuf. 26, 76 (2019).

    Google Scholar 

  9. M.K. Agarwala, V.R. Jamalabad, N.A. Langrana, A. Safari, P.J. Whalen, and S.C. Danforth, Rapid Prototyp. J. 2, 4 (1996).

    Google Scholar 

  10. A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, and D. Krause, Int. J. Refract. Met. Hard Mater. 73, 22 (2018).

    Google Scholar 

  11. J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, Mater. Lett. 248, 165 (2019).

    Google Scholar 

  12. B. Barmore, Fused Filament Fabrication of Filled Polymers for Metal Additive Manufacturing. Master’s Thesis (Mechanical Engineering, Oregon State University, 2016), pp. 55–60.

  13. L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, and X. Li, Materials 10, 305 (2017).

    Google Scholar 

  14. e-xstream, Digimat-AM simulation solution for Additive Manufacturing. https://www.e-xstream.com/product/digimat-am. Accessed 30 July 2019.

  15. Alphastar, Genoa Additive Manufacturing design tool and software suite for polymers, metals and ceramics. http://www.alphastarcorp.com/products/genoa-3dp-simulation/. Accessed 30 July 2019.

  16. Vanderplaats, Genesis structural analysis and optimization software. http://www.vrand.com/products/genesis/. Accessed 30 July 2019.

  17. L.E. Nielsen, Predicting the Properties of Mixtures, 1st ed. (New York: M. Dekker, 1978), pp. 5–11.

    Google Scholar 

  18. S. McGee and R. McGullough, Polym. Compos. 2, 149 (1981).

    Google Scholar 

  19. W. Wu, K. Sadeghipour, K. Boberick, and G. Baran, Mater. Sci. Eng. A 332, 362 (2002).

    Google Scholar 

  20. T.J. Wooster, S. Abrol, J.M. Hey, and D.R. MacFarlane, Compos. Part A 35, 75 (2004).

    Google Scholar 

  21. I. Balać, M. Milovančević, C.-Y. Tang, P.S. Uskoković, and D.P. Uskoković, Mater. Lett. 58, 2437 (2004).

    Google Scholar 

  22. Y.P. Mamunya, V. Davydenko, P. Pissis, and E. Lebedev, Eur. Polym. J. 38, 1887 (2002).

    Google Scholar 

  23. L. Kowalski, J. Duszczyk, and L. Katgerman, J. Mater. Sci. 34, 1 (1999).

    Google Scholar 

  24. A. Boudenne, L. Ibos, M. Fois, E. Gehin, and J.C. Majeste, J. Polym. Sci. Part B Polym. Phys. 42, 722 (2004).

    Google Scholar 

  25. T. Zhang, J. Evans, and K. Dutta, J. Eur. Ceram. Soc. 5, 303 (1989).

    Google Scholar 

  26. K.H. Kate, R.K. Enneti, S.-J. Park, R.M. German, and S.V. Atre, Crit. Rev. Solid State Mater. Sci. 39, 197 (2014).

    Google Scholar 

  27. K.H. Kate, R.K. Enneti, V.P. Onbattuvelli, and S.V. Atre, Ceram. Int. 39, 6887 (2013).

    Google Scholar 

  28. K.H. Kate, V.P. Onbattuvelli, R.K. Enneti, S.W. Lee, S.J. Park, and S.V. Atre, JOM 64, 1048 (2012).

    Google Scholar 

  29. K.H. Kate, R.K. Enneti, T. McCabe, and S.V. Atre, Ceram. Int. 42, 194 (2016).

    Google Scholar 

  30. N.M. Nor, N. Muhamad, M. Ibrahim, M. Ruzi, and K. Jamaludin, Int. J. Mech. Mater. Eng. 6, 126 (2011).

    Google Scholar 

  31. G. Shibo, Q. Xuanhui, H. Xinbo, Z. Ting, and D. Bohua, J. Mater. Process. Technol. 173, 310 (2006).

    Google Scholar 

  32. G. Obasi, O. Ferri, T. Ebel, and R. Bormann, Mater. Sci. Eng. A 527, 3929 (2010).

    Google Scholar 

  33. E. Ergül, H. Özkan Gülsoy, and V. Günay, Powder Metall. 52, 65 (2009).

    Google Scholar 

  34. H.Ö. Gülsoy, N. Gülsoy, and R. Calışıcı, Bio-Med. Mater. Eng. 24, 1861 (2014).

    Google Scholar 

  35. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead Publishing, 2002), pp. 211–215.

    Google Scholar 

  36. G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (Ohio: ASM International, 1993), pp. 514–520.

    Google Scholar 

  37. R. Enneti, V. Onbattuvelli, O. Gulsoy, K. Kate, and S. Atre, Powder-Binder Formulation and Compound Manufacture in Metal Injection Molding (MIM). Handbook of Metal Injection Molding, 2nd ed. (Cambridge: Woodhead Publishing, 2002), pp. 57–88.

    Google Scholar 

  38. G. Chen, C. Ren, X. Yang, X. Jin, and T. Guo, Int. J. Adv. Manuf. Technol. 56, 1027 (2011).

    Google Scholar 

  39. C.J. Smithells, Metals Reference Book, 5th ed. (Oxford: Butterworth Publishing, 1976), pp. 1148–1152.

    Google Scholar 

  40. V. Wagner, M. Baili, G. Dessein, and D. Lallement, Key Eng. Mater. 446, 147 (2010).

    Google Scholar 

  41. J. Elmer, T. Palmer, S. Babu, and E. Specht, Mater. Sci. Eng. A 391, 104 (2005).

    Google Scholar 

  42. R. Rai, J. Elmer, T. Palmer, and T. DebRoy, J. Phys. D Appl. Phys. 40, 5753 (2007).

    Google Scholar 

  43. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).

    Google Scholar 

  44. Y. Lee and G. Welsch, Mater. Sci. Eng. A 128, 77 (1990).

    Google Scholar 

  45. Y.P. Wu, Q.-X. Jia, D.-S. Yu, and L.-Q. Zhang, Polym. Test. 23, 903 (2004).

    Google Scholar 

  46. C.L. Tucker and E. Liang, Compos. Sci. Technol. 59, 655 (1999).

    Google Scholar 

  47. C. Wong and R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999).

    Google Scholar 

  48. A. Metzner, J. Rheol. 29, 739 (1985).

    Google Scholar 

  49. R.M. German, J. Am. Ceram. Soc. 77, 283 (1994).

    MathSciNet  Google Scholar 

  50. H. Chiang, C. Hieber, and K. Wang, Polym. Eng. Sci. 31, 116 (1991).

    Google Scholar 

  51. A.H. Peng, Adv. Mater. Res. 538–541, 1564 (2012).

    Google Scholar 

  52. B.N. Turner and S.A. Gold, Rapid Prototyp. J. 21, 250 (2015).

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial assistance from the Minority Business Development Agency of the US Department of Commerce as well as NASA through a subcontract from Techshot. The authors also acknowledge MSC Software, AlphaSTAR, and Vanderplaats R&D for their support in providing AM software platforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal H. Kate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Shaikh, Q., Balla, V.K. et al. Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF3). JOM 72, 485–495 (2020). https://doi.org/10.1007/s11837-019-03920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03920-y

Navigation