Skip to main content

Advertisement

Log in

Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys

  • Characterization of Advanced Biomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

NiTi shape memory alloys (SMAs), as smart materials, are broadly used in medical implants and appliances despite the presence of toxic Ni. In this study, NiTiNb alloys were produced using the substitution of biocompatible Nb instead of Ni. The arc-melting method was utilized to make five SMA samples comprising Ni(29−x)Ti50Nb(21+x) (x = 0, 1, 2, 3, and 4); then, the phase transformation temperatures, microstructures, crystal structures, and chemical compositions were investigated by DSC, optical microscopy, XRD, and EDX measurements, respectively. The DSC results showed that the samples had a wide hysteresis with the B19′↔B2 phase transformation and martensite start temperatures below room temperature, which makes them suitable for superelastic implants. The presence of dissolved Nb in the matrix of the alloys was the main reason for the widening of temperature hysteresis. When the XRD and SEM results were examined, the β-rich, B2, B19′, and Ti2Ni phases were observed in all samples. Additionally, the main constituent in the dendritic microstructures was Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, Mater. Des. 56, 1078 (2014).

    Article  Google Scholar 

  2. I.N. Qader, M. Kök, F. Dağdelen, and Y. Aydogdu, El-Cezerî J. Sci. Eng. 6, 755 (2019).

    Google Scholar 

  3. D. Wield and E. Gillam, Scripta Metall. 6, 1157 (1972).

    Article  Google Scholar 

  4. W.J. Buehler, J. Gilfrich, and R. Wiley, J. Appl. Phys. 34, 1475 (1963).

    Article  Google Scholar 

  5. X. Zhao, J. Xu, L. Tang, and S. Gong, Intermetallics 15, 1105 (2007).

    Article  Google Scholar 

  6. M. Zarinejad, Y. Liu, and Y. Tong, Intermetallics 17, 914 (2009).

    Article  Google Scholar 

  7. K. Nitta, S. Watanabe, N. Masahashi, H. Hosoda, S. Hanada, M. Niinomi, T. Okabe, E. Taleff, D. Lesuer and H. Lippard, Warrendale, Pennsylvania, USA, TMS 25, 34 (2001)

  8. S. Steinemann, Adv. Biomater. 1, 1 (1980).

    Google Scholar 

  9. T. Mousavi, F. Karimzadeh, and M. Abbasi, Mater. Sci. Eng., A 487, 46 (2008).

    Article  Google Scholar 

  10. C. Ying, J. Hai-Chang, R. Li-Jian, X. Li, and Z. Xin-Qing, Intermetallics 19, 217 (2011).

    Article  Google Scholar 

  11. T. Duerig and K. Melton, European Symposium on Martensitic Transformations, 191, EDP Sciences

  12. P. A. Besselink and R. C. Sachdeva Ni-Ti-Nb alloy processing method and articles formed from the alloy, Google Patents, (2002)

  13. C. A. Aloise and G. T. Garman Method of manufacturing an endodontic instrument, Google Patents (2007)

  14. J.M. de Alcântara Abdala, B.B. Fernandes, D.R. Dos Santos, V.A.R. Henriques, Neto C. de Moura, and A.S. Ramos, J. Alloys Comp. 495, 423 (2010).

    Article  Google Scholar 

  15. Y. Zhou, C.-J. Li, G.-J. Yang, H.-D. Wang, and G. Li, Intermetallics 18, 2154 (2010).

    Article  Google Scholar 

  16. X. He, L. Rong, D. Yan, and Y. Li, Scripta Mater. 53, 1411 (2005).

    Article  Google Scholar 

  17. Y. Chen, H. Jiang, S. Liu, L. Rong, and X. Zhao, Mater. Sci. Eng., A 512, 26 (2009).

    Article  Google Scholar 

  18. X. Fu, M. Guojun, Z. Xinqing, and X. Huibin, Chin. J. Aeronaut. 22, 658 (2009).

    Article  Google Scholar 

  19. K. Otsuka and X. Ren, Progr. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  20. K. Melton and O. Mercier, Acta Metall. 29, 393 (1981).

    Article  Google Scholar 

  21. E. Choi, Y.-S. Chung, Y.-W. Kim, and J.-W. Kim, Smart Mater. Struct. 20, 075016 (2011).

    Article  Google Scholar 

  22. X. Zhao, X. Yan, Y. Yang, and H. Xu, Mater. Sci. Eng., A 438, 575 (2006).

    Article  Google Scholar 

  23. K. Melton, J. Proft and T. Duerig, Proceedings of the MRS International Meeting on Advanced Materials., 165,

  24. E. Choi, Y.-S. Chung, J.-H. Choi, H.-T. Kim, and H. Lee, Smart Mater. Struct. 19, 035024 (2010).

    Article  Google Scholar 

  25. M. Kök, H.S.A. Zardawi, I.N. Qader, and M.S. Kanca, Eur. Phys. J. Plus 134, 197 (2019).

    Article  Google Scholar 

  26. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Metall. Mater. Trans. A 38, 1096 (2007).

    Article  Google Scholar 

  27. F. Dagdelen and Y. Aydogdu, J. Therm. Anal. Calorim. 136, 637 (2019).

    Article  Google Scholar 

  28. I.N. Qader, M. Kök, and F. Dağdelen, Physica B: Condens. Matter. 553, 1 (2019).

    Article  Google Scholar 

  29. F. Dagdelen, M. Kok and I. Qader, Metals Mater. Int., 1 (2019).

  30. E. Ercan, F. Dagdelen and I. Qader, J. Therm. Anal. Calorim., 1 (2019).

  31. M. Kok, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader and E. Özen, J. Therm. Anal. Calorim. (2019).

  32. M. Kök, I. N. Qader, S. S. Mohammed, E. ÖNER, F. Dağdelen and Y. Aydogdu, Mater. Res. Express 7 (2020).

  33. K. Nurveren, A. Akdoğan, and W. Huang, J. Mater. Process. Technol. 196, 129 (2008).

    Article  Google Scholar 

  34. J. W. Christian, The Theory of Transformations in Metals and Alloys, Newnes (2002).

  35. G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka, Acta Mater. 52, 4351 (2004).

    Article  Google Scholar 

  36. K. Li, Y. Li, K. Yu, C. Liu, D. Gibson, A. Leyland, A. Matthews, and Y.Q. Fu, Appl. Phys. Lett. 108, 171907 (2016).

    Article  Google Scholar 

  37. R. Zhu, G. Tang, S. Shi, and M. Fu, J. Mater. Process. Technol. 213, 30 (2013).

    Article  Google Scholar 

  38. T. Tabish, N. Alia, A. Aslama, N. Abbasa, S. Gashkoria, and T. Buttb, Turk. J. Eng. 2, 90 (2014).

    Google Scholar 

  39. G. Sun, X. Wang, Y. Wang, W. Woo, H. Wang, X. Liu, B. Chen, Y.Q. Fu, L. Sheng, and Y. Ren, Mater. Sci. Eng., A 560, 458 (2013).

    Article  Google Scholar 

  40. M. Piao, S. Miyazaki, K. Otsuka and N. Nishida, Mater. Trans., JIM 33, 337 (1992).

  41. X. Zhou, Y. Chen, Y. Huang, Y. Mao, and Y. Yu, J. Alloys Comp. 735, 2616 (2018).

    Article  Google Scholar 

  42. J. Li, H. Wang, J. Liu, and J. Ruan, Mater. Sci. Eng., A 609, 235 (2014).

    Article  Google Scholar 

  43. X. He, L. Rong, D. Yan, and Y. Li, Mater. Sci. Eng., A 371, 193 (2004).

    Article  Google Scholar 

  44. C. Wang, Q. Gao, Y. Yuan, H. Zhang, J. Zhang, Q. Wang, and F. Qu, J. Alloys Compd. 695, 2923 (2017).

    Article  Google Scholar 

  45. H. Yin, G. Ma, Q. Fan, Y. Wang, S. Huang, and Y. Yi, Metals 9, 214 (2019).

    Article  Google Scholar 

  46. C. Bewerse, L.C. Brinson, and D.C. Dunand, Mater. Sci. Eng., A 627, 360 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Firat University Research Project Unit under project no. FF.18.30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dagdelen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdelen, F., Balci, E., Qader, I.N. et al. Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM 72, 1664–1672 (2020). https://doi.org/10.1007/s11837-020-04026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04026-6

Navigation