Skip to main content
Log in

Comparative Study of the Planar Uniformity of the Mechanical Properties of the AA1050 Strips Processed by Conventional and Cross Accumulative Roll-Bonding Techniques

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this research, a modified method of the conventional accumulative roll-bonding (ARB) process, named cross accumulative roll-bonding (CARB), was applied on an AA1050 strip for up to 13 cycles. The planar uniformity of the mechanical properties in the products of ARB and CARB processes has not been investigated yet. This article aims to compare the planar inhomogeneity of the tensile properties in different directions of the rolling plane of the ARB- and CARB-processed specimens. For this purpose, uniaxial tensile tests were performed in the rolling, transverse, and diagonal directions of the products. Furthermore, Vickers microhardness was used to investigate the hardness distribution throughout the thickness of specimens. The results revealed that the CARB process exhibited higher tensile strength, elongation, and hardness with more homogeneous distribution of the hardness and particularly better planar uniformity of the tensile properties compared with the conventional ARB process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, Int. J. Adv. Manuf. Technol. 100, 1647 (2019).

    Google Scholar 

  2. M. Naseri, M. Reihanian, and E. Borhani, Mater. Sci. Eng. A 673, 288 (2016).

    Google Scholar 

  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y. Zhu, JOM 68, 1216 (2016).

    Google Scholar 

  4. R.J. McCabe, J.S. Carpenter, S. Vogel, N.A. Mara, and I.J. Beyerlein, JOM 67, 2810 (2015).

    Google Scholar 

  5. V. Segal, Mater. Sci. Eng. A 197, 157 (1995).

    Google Scholar 

  6. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Acta Mater. 46, 3317 (1998).

    Google Scholar 

  7. P. Bridgman, J. Appl. Phys. 14, 273 (1943).

    Google Scholar 

  8. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Google Scholar 

  9. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Google Scholar 

  10. Y. Saito, Scr. Mater. 39, 1221 (1998).

    Google Scholar 

  11. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater. 47, 579 (1999).

    Google Scholar 

  12. A. Medjahed, B. Li, L. Hou, R. Wu, A. Zegaoui, M. Derradji, and H. Benyamina, JOM 71, 4096 (2019).

    Google Scholar 

  13. L. Zeng, R. Gao, Q. Fang, X. Wang, Z. Xie, S. Miao, T. Hao, and T. Zhang, Acta Mater. 110, 341 (2016).

    Google Scholar 

  14. M. Alizadeh, Mater. Lett. 64, 2641 (2010).

    Google Scholar 

  15. M. Morovvati and B. Mollaei-Dariani, Int. J. Adv. Manuf. Technol. 95, 3523 (2018).

    Google Scholar 

  16. J. Duan, M.Z. Quadir, and M. Ferry, Mater. Lett. 188, 138 (2017).

    Google Scholar 

  17. S. Pasebani and M.R. Toroghinejad, Mater. Sci. Eng. A 527, 491 (2010).

    Google Scholar 

  18. R. Khatami, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, and M. Haghshenas, Int. J. Adv. Manuf. Technol. 93, 681 (2017).

    Google Scholar 

  19. L. Poovazhagan, P. Ruthran, S. Sreyas, A. Thamizharasan, and S. Thejas, Advances in Materials and Metallurgy (Berlin: Springer, 2019), pp. 29–37.

    Google Scholar 

  20. M. Naseri, M. Reihanian, and E. Borhani, Mater. Sci. Eng. A 656, 12 (2016).

    Google Scholar 

  21. A. Etemad, G. Dini, and S. Schwarz, Mater. Sci. Eng. A 742, 27 (2019).

    Google Scholar 

  22. H. Jafarian, Mater. Charact. 114, 88 (2016).

    Google Scholar 

  23. F. Cruz-Gandarilla, A.M. Salcedo-Garrido, R.E. Bolmaro, T. Baudin, S. Natalia, M. Avalos, J.G. Cabañas-Moreno, and H. Mendoza-Leon, Mater. Charact. 118, 332 (2016).

    Google Scholar 

  24. A. Fattah-Alhosseini and O. Imantalab, J. Alloys Compd. 632, 48 (2015).

    Google Scholar 

  25. M. Shaarbaf and M.R. Toroghinejad, Mater. Sci. Eng. A 473, 28 (2008).

    Google Scholar 

  26. M. Böhme and M.F.-X. Wagner, Scr. Mater. 154, 172 (2018).

    Google Scholar 

  27. S. Pasebani, M.R. Toroghinejad, M. Hosseini, and J. Szpunar, Mater. Sci. Eng. A 527, 2050 (2010).

    Google Scholar 

  28. J. Moradgholi, A. Monshi, K. Farmanesh, M. Toroghinejad, and M. Loghman-Estarki, Ceram. Int. 43, 7701 (2017).

    Google Scholar 

  29. S. Ghafari-Gousheh, S.H. Nedjad, and J. Khalil-Allafi, J. Mech. Behav. Biomed. Mater. 51, 147 (2015).

    Google Scholar 

  30. O. Mishin, Y. Zhang, and A. Godfrey, J. Mater. Sci. 52, 2730 (2017).

    Google Scholar 

  31. S. Boudekhani, H. Azzeddine, K. Tirsatine, T. Baudin, A.-L. Helbert, F. Brisset, B. Alili, and D. Bradai, J. Mater. Eng. Perform. 27, 5561 (2018).

    Google Scholar 

  32. M.Z. Quadir, J. Duan, W. Xu, and M. Ferry, Procedia Eng. 184, 30 (2017).

    Google Scholar 

  33. S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito, and N. Furushiro, Mater. Sci. Forum 426, 2649 (2003).

    Google Scholar 

  34. M. Naseri, A. Hassani, and M. Tajally, Ceram. Int. 41, 13461 (2015).

    Google Scholar 

  35. M. Alizadeh and E. Salahinejad, J. Alloys Compd. 620, 180 (2015).

    Google Scholar 

  36. M. Alizadeh and M. Paydar, Mater. Sci. Eng. A 538, 14 (2012).

    Google Scholar 

  37. M. Ruppert, H.W. Höppel, and M. Göken, Mater. Sci. Eng. A 597, 122 (2014).

    Google Scholar 

  38. M.R.K. Ardakani, S. Khorsand, S. Amirkhanlou, and M.J. Nayyeri, Mater. Sci. Eng. A 592, 121 (2014).

    Google Scholar 

  39. M.R.K. Ardakani, S. Amirkhanlou, and S. Khorsand, Mater. Sci. Eng. A 591, 144 (2014).

    Google Scholar 

  40. H. Jafarian, J. Habibi-Livar, and S.H. Razavi, Compos. B 77, 84 (2015).

    Google Scholar 

  41. ASTM B557M, Standard Test Methods of Tension Testing Wrought and Cast Aluminum and Magnesium Alloy Products (ASTM International, West Conshohocken, PA, USA). www.astm.org.

  42. K. Verstraete, A. Helbert, F. Brisset, A. Benoit, P. Paillard, and T. Baudin, Mater. Sci. Eng. A 640, 235 (2015).

    Google Scholar 

  43. A.H. Yaghtin, E. Salahinejad, and A. Khosravifard, Int. J. Miner. Metall. Mater. 19, 951 (2012).

    Google Scholar 

  44. M. Alizadeh and E. Salahinejad, Mater. Sci. Eng. A 595, 131 (2014).

    Google Scholar 

  45. R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, and J.A. Szpunar, Mater. Des. 35, 37 (2012).

    Google Scholar 

  46. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, Mater. Sci. Eng. A 561, 145 (2013).

    Google Scholar 

  47. R. Jamaati and M. Toroghinejad, Mater. Sci. Technol. 27, 1101 (2011).

    Google Scholar 

  48. M. Hashemi, R. Jamaati, and M.R. Toroghinejad, Mater. Sci. Eng. A 532, 275 (2012).

    Google Scholar 

  49. A. Kolahi, A. Akbarzadeh, and M. Barnett, J. Mater. Process. Technol. 209, 1436 (2009).

    Google Scholar 

  50. M. Alizadeh and M. Paydar, J. Alloys Compd. 492, 231 (2010).

    Google Scholar 

  51. S. Li, Comput. Mater. Sci. 46, 1044 (2009).

    Google Scholar 

  52. N. Pardis and R. Ebrahimi, Mater. Sci. Eng. A 527, 6153 (2010).

    Google Scholar 

  53. M. Cabibbo, Mater. Charact. 61, 613 (2010).

    Google Scholar 

  54. H. Zendehdel and A. Hassani, Mater. Des. 37, 13 (2012).

    Google Scholar 

  55. H. Ashuri and A. Hassani, J. Alloys Compd. 617, 444 (2014).

    Google Scholar 

  56. H. Wu, T. Wang, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, J. Manuf. Process. 46, 139 (2019).

    Google Scholar 

  57. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Mater. Sci. Eng. A 497, 132 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ebad Bagherpour for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathallah Qods.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Qods, F., Gerdooei, M. et al. Comparative Study of the Planar Uniformity of the Mechanical Properties of the AA1050 Strips Processed by Conventional and Cross Accumulative Roll-Bonding Techniques. JOM 72, 1571–1579 (2020). https://doi.org/10.1007/s11837-020-04035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04035-5

Navigation