Skip to main content
Log in

Quality Prediction and Discussion of an Abrasive Flow Precision Polishing Baffle Servo Valve Nozzle Based on Orthogonal Experiments

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Through range and variance analyses of an orthogonal experiment, the key factors of abrasive flow precision polishing (AFPP) are confirmed. The influence of grinding speed, abrasive concentration and abrasive particle size parameters on AFPP is secondary to action factors. The optimum AFPP process parameters are obtained. Under these parameters, the Ra value of the surface roughness of the nozzle orifices is acceptable. From 0.679 µm before abrasive flow polishing (AFP) to 0.143 µm, the quality of small holes improved obviously. The quality prediction model of the AFPP baffle servo valve is established through experimental research and data calculation, which can effectively predict the surface quality of the AFP baffle servo valve nozzle. The results of the AFP experiment show that the prediction model is effective and feasible and can obtain the best surface quality. The research results can provide theoretical guidance and technical support for the development of quality control technology of AFPP nozzles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.C. Petare and N.K. Jain, Wear 404–405, 38 (2018).

    Article  Google Scholar 

  2. L. Zhang, Z.M. Yuan, Z.J. Qi, D.H. Cai, Z.C. Cheng, and H. Qi, Powder Technol. 333, 209 (2018).

    Article  Google Scholar 

  3. M.R. Munhoz, L.G. Dias, R. Breganon, F.S.F. Ribeiro, and C.E.S. Júnior, Int. J. Adv. Manuf. Technol. 5061–5070, 106 (2020).

    Google Scholar 

  4. F.J. Chen, S.M. Hao, X.L. Miao, S.H. Yin, and S. Huang, Powder Technol. 327, 215 (2018).

    Article  Google Scholar 

  5. M.L. Zhou, W. Gao, Y.T. Tian, and Z.G. Yang, Int. J. Mater. Process. Technol. 45, 41 (2012).

    Article  Google Scholar 

  6. Y.Z. Fu, H. Gao, Q.S. Yan, X.P. Wang, and X. Wang, Int. J. Adv. Manuf. Technol. 11, 28 (2020).

    Google Scholar 

  7. G.S. Liu, X.M. Zhang, X. Zang, J.Y. Li, and N.N. Su, Adv. Mech. Eng. 10, 15 (2018).

    Google Scholar 

  8. S. Singh, D. Kumar, M.R. Sankar, and V.K. Jain, Int. J. Adv. Manuf. Technol. 100, 1165 (2018).

    Google Scholar 

  9. Y. Wang and Y.B. Yin, Mechanical 64, 86 (2019).

    Google Scholar 

  10. G. Venkatesh, A.K. Sharma, and N. Singh, Simul. Model. Pract. Theory 51, 1 (2015).

    Article  Google Scholar 

  11. M.A. Marzban and S.J. Hemmati, Int. J. Adv. Manuf. Technol. 89, 125 (2017).

    Article  Google Scholar 

  12. J. Kenda, J. Duhovnik, and J. Tavčar, Int. J. Adv. Manuf. Technol. 71, 141 (2014).

    Article  Google Scholar 

  13. J.Y. Li, W.Q. Meng, K. Dong, X.M. Zhang, and W.H. Zhao, Int. J. Precis. Eng. Manuf. 19, 1597 (2016).

    Article  Google Scholar 

  14. J.Y. Li, W.Q. Meng, K. Dong, X.M. Zhang, and W.H. Zhao, Nano Res. Lett. 13, 11 (2018).

    Article  Google Scholar 

  15. B. Rajendra, B. Atul, J. Vivek, and G. Dheeraj, J. Manuf. Process. 50, 266 (2020).

    Article  Google Scholar 

  16. D. Sudhakara, S. Suresh, and B. Vinod, J. Bio Tribo-Corros. 6, 1297 (2020).

    Google Scholar 

  17. V. Bianco, A. Khait, A. Noskov, and V. Alekhin, Appl. Therm. Eng. 106, 1244 (2016).

    Article  Google Scholar 

  18. J. Li, S.M. Ji, and D.P. Tan, Chin. J. Mech. Eng. 30, 301 (2017).

    Article  Google Scholar 

  19. F. Zhou, J.S. Cheng, Y. Xu, and S.S. Song, IEEE Trans. Appl. Supercond. 24, 1 (2014).

    Google Scholar 

  20. Y.F. Wu, H.X. Zhao, C.Q. Zhang, L. Wang, and J.T. Han, Energy 151, 79 (2018).

    Article  Google Scholar 

  21. W.W. Yang, Z.J. Ai, X.D. Zhang, X.P. Chang, and R.Y. Gou, Int. J. Mech. Sci. 138–139, 99 (2018).

    Article  Google Scholar 

  22. H.H. Zeng, R. Yan, P.L. Du, M.K. Zhang, and F.Y. Peng, Wear 408–409, 228 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China No. NSFC 51206011, Jilin Province Science and Technology Development Program of Jilin Province No. 20200301040RQ, Project of the Education Department of Jilin Province No. JJKH20190541KJ and Changchun Science and Technology Program of Changchun City No. 18DY017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Wei, L. et al. Quality Prediction and Discussion of an Abrasive Flow Precision Polishing Baffle Servo Valve Nozzle Based on Orthogonal Experiments. JOM 72, 3236–3246 (2020). https://doi.org/10.1007/s11837-020-04219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04219-z

Navigation