Skip to main content
Log in

Evaluation of Microstructure and Hardness of Novel Al-Fe-Ni Alloys with High Thermal Stability for Laser Additive Manufacturing

  • Aluminum and Magnesium: Casting Technology and Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure and phase composition of cast and laser-melted Al-Fe-Ni alloys were investigated. Two main phases—Al3(Ni,Fe) and Al9FeNi—were formed in the as-cast state. A fine microstructure without porosity or solidification cracks was observed in the Al-Fe-Ni alloys after laser treatment. The hardness of the laser-melted alloys was 2.5–3 times higher than the hardness of the as-cast alloys owing to the formation of an aluminum-based solid solution and fine eutectic particles. The formation of the primary Al9FeNi phase was suppressed as a result of the high cooling rate. Annealing these alloys at temperatures less than 300°C demonstrated the high thermal stability of the microstructure while maintaining the hardness. The Al-Fe-Ni alloys investigated in this study are promising heat-resistant materials for additive manufacturing because of their fine, stable structure, and the low interdiffusion coefficients of Fe and Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.V. Pozdniakov, AYu Churyumov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, and V.A. Korolev, Mater. Lett. 225, 33 (2018). https://doi.org/10.1016/j.matlet.2018.04.077.

    Article  Google Scholar 

  2. D.R. Manca, AYu Churyumov, A.V. Pozdniakov, D.K. Ryabov, V.A. Korolev, and D.K. Daubarayte, Mater. Lett. 236, 676 (2019). https://doi.org/10.1016/j.matlet.2018.11.033.

    Article  Google Scholar 

  3. AYu Churyumov, A.V. Pozdniakov, A.S. Prosviryakov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, V.A. Korolev, A.N. Solonin, M.D. Pavlov, and S.V. Valchuk, Mater. Res. Express 6, 126595 (2019). https://doi.org/10.1088/2053-1591/ab5bea.

    Article  Google Scholar 

  4. R.A. Rahman, A. Haider, S. Palanisamy, and S.H. Masood, Mater. Today Proc. 4, 8724 (2017). https://doi.org/10.1016/j.matpr.2017.07.221.

    Article  Google Scholar 

  5. C.A. Biffi, J. Fiocchi, P. Bassani, D.S. Paolino, A. Tridello, G. Chiandussi, M. Rossetto, and A. Tuissi, Procedia Struct. Integrity 27, 50 (2017). https://doi.org/10.1016/j.prostr.2017.11.060.

    Article  Google Scholar 

  6. M. Wang, B. Song, Q. Wei, Y. Zhang, and Y. Shi, Mater. Sci. Eng. A 739, 463 (2019). https://doi.org/10.1016/j.msea.2018.10.047.

    Article  Google Scholar 

  7. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, and P. Cao, Powder Technol. 319, 117 (2017). https://doi.org/10.1016/j.powtec.2017.06.050.

    Article  Google Scholar 

  8. A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, and K. Wegener, Mater. Des. 115, 52 (2017). https://doi.org/10.1016/j.matdes.2016.11.040.

    Article  Google Scholar 

  9. B. Jiang, L. Zhenglong, C. Xi, L. Peng, L. Nannan, and C. Yanbin, Ceram. Int. 45, 5680 (2019). https://doi.org/10.1016/j.ceramint.2018.12.033.

    Article  Google Scholar 

  10. T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, Mater. Des. 135, 257 (2017). https://doi.org/10.1016/j.matdes.2017.09.014.

    Article  Google Scholar 

  11. P. Wang, C. Gammer, F. Brenne, K. Gokuldoss Prashanth, R. Gregorio Mendes, M. Hermann Rümmeli, T. Gemming, J. Eckert, and S. Scudino, Mater. Sci. Eng. A 711, 562 (2018). https://doi.org/10.1016/j.msea.2017.11.063.

    Article  Google Scholar 

  12. ASM HANDBOOK, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (The Materials Information Company, 2010).

  13. O. Lopez-Botello, U. Martinez-Hernandez, J. Ramírez, C. Pinna, and K. Mumtaz, Mater. Des. 113, 369 (2017). https://doi.org/10.1016/j.matdes.2016.10.031.

    Article  Google Scholar 

  14. V.S. Zolotorevskiy, A.V. Pozdniakov, and Y.Y. Kanakidi, Russ. J. Non. Ferrous Met. 53, 392 (2012). https://doi.org/10.3103/S1067821212050148.

    Article  Google Scholar 

  15. V.S. Zolotorevskiy, A.V. Pozdniakov, and A.V. Khvan, Russ. J. Non. Ferrous Met. 52, 50 (2011). https://doi.org/10.3103/S1067821211010275.

    Article  Google Scholar 

  16. A.V. Pozdniakov and V.S. Zolotorevskiy, Int. J. Cast Met. Res. 27, 193 (2014). https://doi.org/10.1179/1743133613Y.0000000096.

    Article  Google Scholar 

  17. N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther, Phys. Procedia 83, 918 (2016). https://doi.org/10.1016/j.phpro.2016.08.096.

    Article  Google Scholar 

  18. A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, and S.S. Babu, Acta Mater. 126, 507 (2017). https://doi.org/10.1016/j.actamat.2016.12.065.

    Article  Google Scholar 

  19. Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, and X. Wu, Acta Mater. 171, 108 (2019). https://doi.org/10.1016/j.actamat.2019.04.014.

    Article  Google Scholar 

  20. J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, J. Mater. Sci. Technol. 35, 270 (2019). https://doi.org/10.1016/j.jmst.2018.09.004.

    Article  Google Scholar 

  21. Q. Jia, P. Rometsch, S. Cao, K. Zhang, and X. Wu, Mater. Des. 174, 107775 (2019). https://doi.org/10.1016/j.matdes.2019.107775.

    Article  Google Scholar 

  22. M. Rappaz, B. Carrupt, M. Zimmermann, and W. Kurz, Helv. Phys. Acta 60, 924 (1987). https://doi.org/10.5169/seals-115877.

    Article  Google Scholar 

  23. W. Kurz and R. Trivedi, Metall. Mater. Trans. A 27A, 625 (1996). https://doi.org/10.1007/BF02648951.

    Article  Google Scholar 

  24. K. Hirano, R. Aagrwala, and M. Cohen, Acta Metall. 10, 857 (1962). https://doi.org/10.1016/0001-6160(63)90172.

    Article  Google Scholar 

  25. B.L. Silva, J.G. Dessi, L.F. Gomes, M.M. Peres, M.V. Cante, and J.E. Spinelli, J. Alloys Compd. 691, 952 (2017). https://doi.org/10.1016/j.jallcom.2016.08.243.

    Article  Google Scholar 

  26. S. Engin, U. Büyük, and N. Maraslı, J. Alloys Compd. 660, 23 (2016). https://doi.org/10.1016/j.jallcom.2015.11.080.

    Article  Google Scholar 

  27. N.A. Belov, D.G. Eskin, and N.N. Avxentieva, Acta Metall. 53, 4709 (2005). https://doi.org/10.1016/j.actamat.2005.07.003.

    Article  Google Scholar 

  28. X. Cao, W. Wallace, J.P. Immarigeon, and C. Poon, Mater. Manuf. Process. 18, 1 (2003). https://doi.org/10.1081/amp-120017586.

    Article  Google Scholar 

  29. J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, and F.J. Botana, Appl. Surf. Sci. 255, 9512 (2009). https://doi.org/10.1016/j.apsusc.2009.07.081.

    Article  Google Scholar 

  30. H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, and X. Zeng, Scr. Mater. 134, 6 (2017). https://doi.org/10.1016/j.scriptamat.2017.02.036.

    Article  Google Scholar 

  31. M. Vončina, P. Mrvar, and J. Medved, Mater. Geoenviron. J. 52, 621 (2006).

    Google Scholar 

Download references

Acknowledgements

Loginova I.S. would like to thank Dr. Solonin A.N. for valuable discussions regarding the structure formation process. This project and all the experiments were funded by RFBR, Project Number 19-38-60037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Loginova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginova, I.S., Sazerat, M.V., Loginov, P.A. et al. Evaluation of Microstructure and Hardness of Novel Al-Fe-Ni Alloys with High Thermal Stability for Laser Additive Manufacturing. JOM 72, 3744–3752 (2020). https://doi.org/10.1007/s11837-020-04321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04321-2

Navigation