Skip to main content

Advertisement

Log in

Finite Element Analysis and Techno-economic Modeling of Solar Silicon Molten Salt Electrolysis

  • Silicon Production, Refining, Properties, and Photovoltaics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A new process is presented for low-cost one-step production of pure solid silicon from natural quartzite by molten salt electrolysis. At a process temperature of 1100°C, a techno-economic model including detailed mass and energy balances estimates energy consumption below 15 kWh/kg, with operating cost of $1.74/kg and capital cost around $10,500 per t/a (tonne annually) of production capacity for a 160,000 t/a plant. Use of an inert solid oxide membrane anode results in a pure oxygen by-product and no direct emissions. Finite element analysis estimates the current density distribution and total current to inform the design of slab-shaped solid silicon cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. S.A. Mann, M.J. de Wild-Scholten, V.M. Fthenakis, W.G.J.H.M. van Sark, and W.C. Sinke, Prog. Photovolt. Res. Appl. 22, 1180 (2014).

    Article  Google Scholar 

  2. M. Osborne, “Explosion at Mitsubishi polysilicon plant in Japan causes deaths” PV Tech (2014). https://www.pv-tech.org/news/explosion_at_mitsubishi_polysilicon_plant_in_japan_causes_deaths. Accessed July 2020

  3. M. Pace, “Final investigation determines Wacker explosion out of company's control” Chatt. Times Free Press (2018). https://www.timesfreepress.com/news/breakingnews/story/2018/jul/05/final-investigation-wacker-explosion/474431/. Accessed July, 2020

  4. n.a. “Polysilicon Shortage: Production Solar panels in Danger” BetterWorldSolutions—Neth. (2018). https://www.betterworldsolutions.eu/rawmaterial-shortage-production-solar-panels-danger/. Accessed July 2020

  5. T. Buonassisi, A.A. Istratov, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, and E.R. Weber, Nat. Mater. 4, 676 (2005).

    Article  Google Scholar 

  6. W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, and P.A. Ramachandran, Sol. Energy Mater. Sol. Cells 94, 1980 (2010).

    Article  Google Scholar 

  7. A. Ramos, W.O. Filtvedt, D. Lindholm, P.A. Ramachandran, A. Rodríguez, and C. del Cañizo, J. Cryst. Growth 431, 1 (2015).

    Article  Google Scholar 

  8. S. Nichol, U.S. Patent 7,727,503 (1 June 2010)

  9. Y. Ren, S. Ueda, and K. Morita, A.C.S. Sustain. Chem. Eng. 7, 20107 (2019).

    Article  Google Scholar 

  10. L.A.V. Teixeira and K. Morita, ISIJ Int. 49, 783 (2009).

    Article  Google Scholar 

  11. K. Morita and T. Yoshikawa, Trans. Nonferrous Met. Soc. China 21, 685 (2011).

    Article  Google Scholar 

  12. E. Olsen and S. Rolseth, Metall. Mater. Trans. B 41, 295 (2010).

    Article  Google Scholar 

  13. Y.-Q. Lai, M. Jia, Z.-L. Tian, J. Li, J.-F. Yan, J.-G. Yi, Z.-G. Wang, and Y.-X. Liu, Metall. Mater. Trans. A 41, 929 (2010).

    Article  Google Scholar 

  14. K. Johansen, D.R. Sadoway, B. Myhre, M. Engvoll, and K. Engvoll, 7,901,561 (8 March 2011)

  15. G.M. Haarberg, in TMS Middle East - Mediterr. Mater. Congr. Energy Infrastruct. Syst. MEMA 2015 (TMS, 2015), p. 6

  16. T. Nohira, in Encycl. Appl. Electrochem., edited by G. Kreysa, K. Ota, and R. F. Savinell (Springer New York, New York, NY, 2014), pp. 1963–1966

  17. E. Juzeliunas and D.J. Fray, Chem. Rev. 120, 1690 (2020)

  18. K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata, and Y. Ito, J. Electrochem. Soc. 152, D69 (2005).

    Article  Google Scholar 

  19. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen, Angew. Chem. Int. Ed. 43, 733 (2004).

    Article  Google Scholar 

  20. U. Cohen, J. Electron. Mater. 6, 607 (1977).

    Article  Google Scholar 

  21. D. Elwell and G.M. Rao, J. Appl. Electrochem. 18, 15 (1988).

    Article  Google Scholar 

  22. J.T. Moore, T.H. Wang, M.J. Heben, K. Douglas, and T.F. Ciszek, in Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf.—1997 (IEEE, Anaheim, CA, USA, 1997), pp. 775–778

  23. K. Grjotheim, K. Matiaśovský, P. Fellner, and A. Silný, Can. Metall. Q. 10, 79 (1971).

    Article  Google Scholar 

  24. T. Oishi, M. Watanabe, K. Koyama, M. Tanaka, and K. Saegusa, J. Electrochem. Soc. 158, E93 (2011).

    Article  Google Scholar 

  25. G. Bøe, K. Grjotheim, K. Matiašovský, and P. Fellner, Can. Metall. Q. 10, 281 (1971).

    Article  Google Scholar 

  26. G. Bøe, K. Grjotheim, K. Matiašovský, and P. Fellner, Can. Metall. Q. 11, 463 (1972).

    Article  Google Scholar 

  27. G.M. Haarberg, T. Kato, Y. Norikawa, and T. Nohira, ECS Trans. 89, 29 (2019).

    Article  Google Scholar 

  28. Y. Ma, A. Ido, K. Yasuda, R. Hagiwara, T. Homma, and T. Nohira, J. Electrochem. Soc. 166, D162 (2019).

    Article  Google Scholar 

  29. J. Xu, B. Lo, Y. Jiang, U. Pal, and S. Basu, J. Eur. Ceram. Soc. 34, 3887 (2014).

    Article  Google Scholar 

  30. J. Guo, T. Villalon, U. Pal, and S. Basu, J. Am. Ceram. Soc. 101, 3605 (2018).

    Article  Google Scholar 

  31. T. Villalón Jr., Zero-Direct Emission Silicon Production via Solid Oxide Membrane Electrolysis (Ph.D.: Boston University, 2018).

    Google Scholar 

  32. U.B. Pal, D.E. Woolley, and G.B. Kenney, JOM 53, 32 (2001).

    Article  Google Scholar 

  33. U.B. Pal and A.C. Powell, JOM 59, 44 (2007).

    Article  Google Scholar 

  34. X. Ma, T. Yoshikawa, and K. Morita, J. Cryst. Growth 377, 192 (2013).

    Article  Google Scholar 

  35. A.C. Powell and S.J. Derezinski, U.S. Patent 8,460,535 (11 June 2013)

  36. D. Matuszak, ARPA-E METALS Tool (Department of Energy: U.S, 2013).

    Google Scholar 

  37. K.I. Vatalis, G. Charalambides, and N.P. Benetis, Procedia Econ. Finance 24, 734 (2015).

    Google Scholar 

  38. A. Powell and S. Pati, in CFD Model. Simul. Mater. Process., edited by L. Nastac, L. Zhang, B.G. Thomas, A. Sabau, N. El-Kaddah, A.C. Powell, and H. Combeau (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012), pp. 57–64

  39. M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed. (National Institute of Technology, Gaithersburg, Maryland, USA, 1996)

  40. A. Krishnan, Solid Oxide Membrane Process for the Direct Reduction of Magnesium from Magnesium Oxide (Ph.D.: Boston University, 2006).

    Google Scholar 

  41. Z.R. Hesabi, M. Mazaheri, and T. Ebadzadeh, J. Alloys Compd. 494, 362 (2010).

    Article  Google Scholar 

  42. C. Stinn and A. Allanore, Electrochem. Soc. Interface 29, 44 (2020).

    Article  Google Scholar 

  43. C. Ritter, Interview regarding operation and economics of Century Aluminum’s Goose Creek smelter (2020).

  44. A. Cezairliyan and A.P. Miiller, Int. J. Thermophys. 4, 389 (1983).

    Article  Google Scholar 

  45. M.C.H.M. Wouters, H.M. Eijkman, and L.J. van Ruyven, Philips Res. Repts. 31, 278 (1976).

    Google Scholar 

  46. S. Fan, G. Plascencia, and T. Utigard, Can. Metall. Q. 47, 509 (2008).

    Article  Google Scholar 

  47. D.E. Holcomb and S.M. Cetiner, An Overview of Liquid-Fluoride-Salt Heat Transport Systems (Oak Ridge National Laboratory, 2010)

Download references

Acknowledgments

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award No. DE-EE0008988 and by the US National Science Foundation under Award Nos. 1937818 and 1829089. This research was performed using computational resources supported by the Academic and Research Computing group at Worcester Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Powell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moudgal, A., Buasai, S., Wu, Y.J. et al. Finite Element Analysis and Techno-economic Modeling of Solar Silicon Molten Salt Electrolysis. JOM 73, 233–243 (2021). https://doi.org/10.1007/s11837-020-04468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04468-y

Navigation