Skip to main content
Log in

Recovery of Zinc and Lead from Copper Smelting Slags by Chlorination Roasting

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper smelting slags are important secondary resources containing varieties of valuable metals. In this paper, CaCl2 was used as the chlorination agent to recycle Zn and Pb from copper smelting slags by chlorination roasting. The effects of temperature, holding time, the dosage of CaCl2, and the roasting atmosphere on the metal recovery ratio were investigated. The results showed that the recovery ratio of Zn and Pb reached 74.74% and 94.72%, respectively, under typical conditions. When the roasting temperature was above 1100°C, the material began to sinter or even melt with the increase of temperature, which was not conducive to the recovery of metals. An excessively long roasting time will convert chlorides into oxides and reduce the metal recovery ratio. The thermodynamic calculation results indicated that, when the temperature was higher than 850°C, the calcium introduced by the CaCl2 would be integrated with Si and Fe in the slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Cheng, Z. Cui, L. Contreras, M. Chen, A. Nguyen, and B. Zhao, JOM 71, 1897. (2019).

    Article  Google Scholar 

  2. Q. Wang, Z. Li, D. Li, Q. Tian, X. Guo, Z. Yuan, B. Zhao, Z. Wang, Y. Wang, S. Qu, J. Yan, and G. Peng, JOM 72, 2676. (2020).

    Article  Google Scholar 

  3. National Bureau of Statistics, “Statistical Communique of the People's Republic of China on the 2019 National Economic and Social Development” (China Statistical Yearbook, 2020), http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html. Accessed 28 February 2020.

  4. S. Liu, Q. Li, and J. Song, Powder Technol. 330, 105. (2018).

    Article  Google Scholar 

  5. Z. Guo, D. Zhu, J. Pan, F. Zhang, and C. Yang, JOM 70, 533. (2018).

    Article  Google Scholar 

  6. Y. Zhang, W. Shen, M. Wu, S. Bo, M. Li, G. Xu, B. Zhang, Q. Ding, and X. Chen, Constr. Build. Mater 244, 118312. (2020).

    Article  Google Scholar 

  7. B. Han, B. Altansukh, K. Haga, Z. Stevanović, R. Jonović, L. Avramović, D. Urosević, Y. Takasaki, N. Masuda, D. Ishiyama, and A. Shibayama, J. Hazard. Mater. 352, 192. (2018).

    Article  Google Scholar 

  8. A.R. Videla, R. Morales, T. Saint-Jean, L. Gaete, Y. Vargas, and J.D. Miller, Miner. Eng. 99, 89. (2016).

    Article  Google Scholar 

  9. Y. Sun, J. Zhang, Y. Wang and Q. Li, Rare Metal Technology 2016, ed. S. Alam, H. Kim, N.R. Neelameggham, T. Ouchi, H. Oosterhof (The Minerals, Metals & Materials Society, 2016), pp. 87-94.

  10. H. Wang and S. Song, J. Cent. South Univ. (Engl. Ed.), 27, 2249 (2020).

  11. M. Jung, Y. Choi, and J. Jeong, Environ. Geochem. Health 33, 113. (2011).

    Article  Google Scholar 

  12. H. Wang, Y. Feng, H. Li, and J. Kang, Powder Technol. 355, 191. (2019).

    Article  Google Scholar 

  13. H. Wang, Y. Feng, H. Li, and J. Kang, Trans. Nonferrous Met. Soc. China 30(4), 1111. (2020).

    Article  Google Scholar 

  14. T.K. Mukherjee, P.R. Menon, P.P. Shukla, and C.K. Gupta, JOM 37, 29. (1985).

    Article  Google Scholar 

  15. S. Bai, Y. Bi, Z. Ding, C. Li, and S. Wen, J. Alloys Compd. 840, 155722. (2020).

    Article  Google Scholar 

  16. H. Qin, X. Guo, Q. Tian, and L. Zhang, Sep. Purif. Technol. 250, 117168. (2020).

    Article  Google Scholar 

  17. T.K. Mukherjee, and C.K. Gupta, Miner. Process. Extr. Metall. Rev. 1, 111. (1983).

    Article  Google Scholar 

  18. W. Yu, Q. Tang, J. Chen and T. Sun, Int. J. Miner., Metall. Mater., 23, 1126 (2016).

  19. X. Huang, Principles on Ferrous Metallurgy, 4th edn. (Metallurgical Industry Press, Beijing, 2013), pp 4–18.

    Google Scholar 

  20. H. Li, Metallurgical Principle, 2nd edn. (Science Press, Beijing, 2005), pp 206–208.

    Google Scholar 

  21. G. Zha, B. Yang, C. Yang, X. Guo, and W. Jiang, JOM 71, 2413. (2019).

    Article  Google Scholar 

  22. Z. Dong, Y. Xia, X. Guo, J. Zhao, and Y. Liu, Powder Technol. 368, 160. (2020).

    Article  Google Scholar 

  23. Q. Wang, J.W. Graydon, and D.W. Kirk, J. Chongqing Univ. 26, 73. (2003).

    Google Scholar 

  24. C. Lei, T. Chen, B. Yan and X. Xiao, Rare Met. (Beijing, China) (2015) doi: https://doi.org/10.1007/s12598-015-0499-0.

  25. S. Han, X. Wang, and R. Zhou, Gang Tie Fan Tai 14, 39. (1993).

    Google Scholar 

  26. Y. Zhou, D. Yan, L. Li, J. Cong, N. Wang, Z. Peng, and Q. Wang, Acta Sci. Circumst. 35, 3769. (2015).

    Google Scholar 

  27. I. Jaafar, A.J. Griffiths, A.C. Hopkins, J.M. Steer, M.H. Griffiths, and D.J. Sapsford, Miner. Eng. 24, 1028. (2011).

    Article  Google Scholar 

  28. G. Jiang, P. Wu, Z. Wang, Y. Yan, and Q. Jing, Nonferrous Met. Sci. Eng. 6, 43. (2016).

    Google Scholar 

  29. C. Wang, X. Hu, H. Matsuura, and F. Tsukihashi, ISIJ Int. 47, 370. (2007).

    Article  Google Scholar 

  30. Z. Xing, G. Cheng, H. Yang, X. Xue, and P. Jiang, Miner. Eng. 154, 106404. (2020).

    Article  Google Scholar 

  31. J. Sun, P. Han, Q. Liu, J. Ding, and S. Ye, Trans. Indian Inst. Met. 72, 1053. (2019).

    Article  Google Scholar 

  32. K. Li, S. Ping, H. Wang, and W. Ni, Int. J. Miner. Metall. Mater. 20, 1035. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51620105013 and No. 51904351), Innovation-Driven Project of Central South University Hunan (No.2020CX028) and Natural Science Fund for Distinguished Young Scholar of Hunan Province, China (No. 2019JJ20031). Project (2019YFC1907400) supported by the National Key R&D Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, B., Wang, Q. et al. Recovery of Zinc and Lead from Copper Smelting Slags by Chlorination Roasting. JOM 73, 1861–1870 (2021). https://doi.org/10.1007/s11837-021-04680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04680-4

Navigation