Skip to main content
Log in

Effect of Homogenization Treatment Regime on Microstructure, Recrystallization Behavior, Mechanical Properties, and Superplasticity of Al-Cu-Er-Zr Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aluminum-based alloys with advanced processing and service properties are required for the automotive and airspace industries. The current study focuses on the microstructure, recrystallization behavior, and elevated- and room-temperatures tensile properties of the novel Al-Cu-Er-Zr-based alloy pretreated using different homogenization annealing regimes. Aluminum solid solution, Al8Cu4Er phases of crystallization origin, and nanoscale L12-Al3(Er,Zr) precipitates were observed in the studied alloy. The alloy exhibited a non-recrystallized structure after annealing of cold-rolled sheets at 300°C, with yield strength of 300 MPa and ultimate tensile strength of 330 MPa at room temperature. The fine-grained structure of the alloy provided superplasticity with elongation to failure up to 450% in the temperature range of 550°C to 605°C and a strain rate range of 10–3 s–1 to 10–2 s–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.W. Zhu, and E.A. Starke, Acta Mater. 47, 3263. (1999).

    Article  Google Scholar 

  2. W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, Scr. Mater. 70, 43. (2014).

    Article  Google Scholar 

  3. G.S. Rohrer, Metall. Mater. Trans. A 41, 1063. (2010).

    Article  Google Scholar 

  4. P.A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913. (1998).

    Article  Google Scholar 

  5. E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747. (1951).

    Article  Google Scholar 

  6. Z.C. Cordero, B.E. Knight, and C.A. Schuh, Int. Mater. Rev. 61, 495. (2016).

    Article  Google Scholar 

  7. M.E. van Dalen, D.C. Dunand, and D.N. Seidman, Acta Mater. 53, 4225. (2005).

    Article  Google Scholar 

  8. N.A. Belov, A.N. Alabin, D.G. Eskin, and V.V. Istomin-Kastrovskii, J. Mater. Sci. 41, 5890. (2006).

    Article  Google Scholar 

  9. T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Mater. Sci. Eng. A 707, 58. (2017).

    Article  Google Scholar 

  10. A.G. Mochugovskiy, A.V. Mikhaylovskaya, M.Y. Zadorognyy, and I.S. Golovin, J. Alloys Compd. 856, 157455. (2021).

    Article  Google Scholar 

  11. Y. He, X. Zhang, and J. You, Trans. Nonferrous Met. Soc. China 16, 1228. (2006).

    Article  Google Scholar 

  12. Y. Filatov, V. Yelagin, and V. Zakharov, Mater. Sci. Eng. A 280, 97. (2000).

    Article  Google Scholar 

  13. N.Q. Vo, D.C. Dunand, and D.N. Seidman, Acta Mater. 63, 73. (2014).

    Article  Google Scholar 

  14. R. Kaibyshev, E. Avtokratova, A. Apollonov, and R. Davies, Scr. Mater. 54, 2119. (2006).

    Article  Google Scholar 

  15. A. Kumar, A.K. Mukhopadhyay, and K.S. Prasad, Mater. Sci. Eng. A 527, 854. (2010).

    Article  Google Scholar 

  16. M. Li, Q. Pan, Y. Shi, X. Sun, and H. Xiang, Mater. Sci. Eng. A 687, 298. (2017).

    Article  Google Scholar 

  17. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. Langdon, Acta Mater. 50, 553. (2002).

    Article  Google Scholar 

  18. R.Z. Valiev, V.U. Kazykhanov, A.M. Mavlyutov, A.A. Yudakhina, N.Q. Chinh, and M.Y. Murashkin, Adv. Eng. Mater. 22, 1900555. (2020).

    Article  Google Scholar 

  19. H. Li, J. Bin, J. Liu, Z. Gao, and X. Lu, Scr. Mater. 67, 73. (2012).

    Article  Google Scholar 

  20. S.P. Wen, K.Y. Gao, H. Huang, W. Wang, and Z.R. Nie, J. Alloys Compd. 574, 92. (2013).

    Article  Google Scholar 

  21. M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, and D.N. Seidman, Acta Mater. 57, 4081. (2009).

    Article  Google Scholar 

  22. C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Acta Mater. 59, 7029. (2011).

    Article  Google Scholar 

  23. S.M. Amer, R.Y. Barkov, and A.V. Pozdniakov, Phys. Met. Metallogr. 121, 495. (2020).

    Article  Google Scholar 

  24. S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, A. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, Appl. Sci. 10, 5345. (2020).

    Article  Google Scholar 

  25. S.P. Wen, K.Y. Gao, Y. Li, H. Huang, and Z.R. Nie, Scr. Mater. 65, 592. (2011).

    Article  Google Scholar 

  26. A.V. Pozdnyakov, A.A. Osipenkova, D.A. Popov, S.V. Makhov, and V.I. Napalkov, Met. Sci. Heat Treat. 58, 537. (2017).

    Article  Google Scholar 

  27. H.L. Hao, D.R. Ni, Z. Zhang, D. Wang, B.L. Xiao, and Z.Y. Ma, Mater. Des. 52, 706. (2013).

    Article  Google Scholar 

  28. A.V. Pozdniakov, V. Yarasu, R.Y. Barkov, O.A. Yakovtseva, S.V. Makhov, and V.I. Napalkov, Mater. Lett. 202, 116. (2017).

    Article  Google Scholar 

  29. S.M. Amer, RYu. Barkov, O.A. Yakovtseva, I.S. Loginova, and A.V. Pozdniakov, Mater. Sci. Technol. 36, 453. (2020).

    Article  Google Scholar 

  30. A.V. Pozdnyakov, R.Y. Barkov, Z. Sarsenbaev, S.M. Amer, and A.S. Prosviryakov, Phys. Met. Metallogr. 120, 614. (2019).

    Article  Google Scholar 

  31. S.M. Amer, R.Y. Barkov, O.A. Yakovtseva, and A.V. Pozdniakov, Phys. Met. Metallogr. 121, 476. (2020).

    Article  Google Scholar 

  32. X. Wang, Q. Li, R. Wu, X. Zhang, and L. Ma, Adv. Mater. Sci. Eng. 2018, 1. (2018).

    Google Scholar 

  33. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Metall. Trans. A 12, 1267. (1981).

    Article  Google Scholar 

  34. I. Gutierrez-Urrutia, M.A. Muñoz-Morris, and D.G. Morris, Acta Mater. 55, 1319. (2007).

    Article  Google Scholar 

  35. F.J. Humphreys, Acta Metall. 25, 1323. (1977).

    Article  Google Scholar 

  36. A.V. Pozdniakov, R.Y. Barkov, S.M. Amer, V.S. Levchenko, A.D. Kotov, and A.V. Mikhaylovskaya, Mater. Sci. Eng. A 758, 28. (2019).

    Article  Google Scholar 

  37. A.A. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, O.V. Rofman, and V.K. Portnoy, Mater. Sci. Eng. A 718, 190. (2018).

    Article  Google Scholar 

  38. O.A. Yakovtseva, M.N. Sitkina, A.D. Kotov, O.V. Rofman, and A.V. Mikhaylovskaya, Mater. Sci. Eng. A 788, 139639. (2020).

    Article  Google Scholar 

  39. F.A. Mohamed, Materials (Basel). 4, 1194. (2011).

    Article  MathSciNet  Google Scholar 

  40. H. Jin, B.S. Amirkhiz, and D.J. Lloyd, Metall. Mater. Trans. A 49, 1962. (2018).

    Article  Google Scholar 

  41. A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, and V.K. Portnoy, J. Alloys Compd. 688, 336. (2016).

    Article  Google Scholar 

  42. K. Sotoudeh, and P.S. Bate, Acta Mater. 58, 1909. (2010).

    Article  Google Scholar 

  43. A.G. Mochugovskiy, A.V. Mikhaylovskaya, N.Y. Tabachkova, and V.K. Portnoy, Mater. Sci. Eng. A 744, 195. (2019).

    Article  Google Scholar 

  44. Z. Guo, G. Zhao, and X.-G. Chen, Mater. Charact. 102, 122. (2015).

    Article  Google Scholar 

  45. S.H. Mous Avianijdan, D. Kang, N. Singh, and M. Gallerneault, Mater. Sci. Eng. A 640, 275. (2015).

    Article  Google Scholar 

  46. P.H.L. Souza, C.A.S. de Oliveira, and J.M.V. Quaresma, J. Mater. Res. Technol. 7, 66. (2018).

    Article  Google Scholar 

  47. M.J. Starink, and S.C. Wang, Acta Mater. 51, 5131. (2003).

    Article  Google Scholar 

  48. N.Y. Zolotorevsky, A.N. Solonin, A.Y. Churyumov, and V.S. Zolotorevsky, Mater. Sci. Eng. A 502, 111. (2009).

    Article  Google Scholar 

  49. T.G. Langdon, Adv. Eng. Mater. 22, 1900442. (2020).

    Article  Google Scholar 

  50. G.J. Davies, J.W. Edington, C.P. Cutler, and K.A. Padmanabhan, J. Mater. Sci. 5, 1091. (1970).

    Article  Google Scholar 

  51. L. Bhatta, A. Pesin, A.P. Zhilyaev, P. Tandon, C. Kong, and H. Yu, Metals (Basel). 10, 77. (2020).

    Article  Google Scholar 

  52. B.P. Kashyap, A. Arieli, and A.K. Mukherjee, J. Mater. Sci. 20, 2661. (1985).

    Article  Google Scholar 

  53. E.D. Hondros, Phys. Status Solidi 21, 375. (1967).

    Article  Google Scholar 

  54. A.B. Lidiard, Philos. Mag. 5, 1171. (1960).

    Article  Google Scholar 

  55. A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, and V.K. Portnoy, Mater. Sci. Eng. A 627, 31. (2015).

    Article  Google Scholar 

  56. K.A. Padmanabhan, and M.R. Basariya, Mater. Sci. Eng. A 744, 704. (2019).

    Article  Google Scholar 

  57. M.A. Rust, and R.I. Todd, Acta Mater. 59, 5159. (2011).

    Article  Google Scholar 

  58. H. Masuda, and E. Sato, Acta Mater. 197, 235. (2020).

    Article  Google Scholar 

  59. A.H. Chokshi, Adv. Eng. Mater. 22, 1900748. (2020).

    Article  Google Scholar 

  60. F.A. Mohamed, Adv. Eng. Mater. 22, 1900532. (2020).

    Article  Google Scholar 

  61. A.V. Mikhaylovskaya, A.A. Kishchik, N.Y. Tabachkova, A.D. Kotov, V.V. Cheverikin, and A.I. Bazlov, JOM 72, 1619. (2020).

    Article  Google Scholar 

  62. H. Masuda, T. Kanazawa, H. Tobe, and E. Sato, Scr. Mater. 149, 84. (2018).

    Article  Google Scholar 

  63. K. Arun Babu, V. Subramanya Sarma, C.N. Athreya, and K.A. Padmanabhan, Mater. Sci. Eng. A 657, 185. (2016).

    Article  Google Scholar 

  64. M. Myshlyaev, S. Mironov, G. Korznikova, T. Konkova, E. Korznikova, A. Aletdinov, and G. Khalikova, Mater. Lett. 275, 128063 (2020).

  65. M. Mabuchi, and K. Higashi, JOM 50, 34. (1998).

    Article  Google Scholar 

  66. X. Zhang, and M. Tan, Scr. Mater. 38, 827. (1998).

    Article  Google Scholar 

  67. O.D. Sherby, and E.M. Taleff, Mater. Sci. Eng. A 322, 89. (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The phase composition and mechanical properties studies were supported by the Russian Science Foundation (Project No. 19-79-10242). The superplastic deformation behavior and grain structure at elevated temperatures were analyzed with support from the Russian Science Foundation (Grant No. 17-79-20426). S.M.A. gratefully acknowledges financial support from the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST MISIS for support with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Barkov.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, S.M., Mikhaylovskaya, A.V., Barkov, R.Y. et al. Effect of Homogenization Treatment Regime on Microstructure, Recrystallization Behavior, Mechanical Properties, and Superplasticity of Al-Cu-Er-Zr Alloy. JOM 73, 3092–3101 (2021). https://doi.org/10.1007/s11837-021-04766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04766-z

Navigation