Skip to main content
Log in

The thermodynamic modeling of multicomponent phase equilibria

  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Enormous progress has been made in the calculation of phase diagrams during the past 30 years. This progress will continue as model descriptions are improved and computational technology advances. Improvement has been made in the model descriptions in the CALPHAD method, the coupling of phase diagrams with kinetic process modeling, computer programs for easy access to phase diagram information, and the construction of databases used for calculating the phase diagrams of complex commercial alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Massalski, ed., Binary Alloy Phase Diagrams, 2nd ed., vol. 1–3 (Materials Park, OH: ASM, 1990).

    Google Scholar 

  2. B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, 5, subvol. a–g, ed. O. Madelung (Berlin, Germany: New Series, Springer, 1991–1997).

    Google Scholar 

  3. Phase Equilibria Diagrams, vol. IX–XII (Westerville, OH: American Ceramic Society, 1992–1996).

  4. Phase Diagrams for Ceramists, vol. I–VIII (Westerville, OH: American Ceramic Society, 1964–1990).

  5. P. Villar, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, 1–10 (Materials Park, OH: ASM, 1995).

    Google Scholar 

  6. Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data & Phase Diagrams, 1–15, ed. G. Petzow and G. Effenberg (Weinheim, Germany: VCH Verlagsgesellscahft, 1988–1995).

    Google Scholar 

  7. J. Hertz, J. Phase Equilibria, 13 (1992), pp. 450–458.

    CAS  Google Scholar 

  8. J.J. van Laar, Z. Phys. Chem., 63 (1908), pp. 216–253; 64 (1908) pp. 257–297.

    Google Scholar 

  9. J.H. Hildebrand, J. Amer. Chem. Soc., 51 (1929), pp. 66–80.

    Article  CAS  Google Scholar 

  10. J.L. Meijering, Philips Res. Rep., 5 (1950), pp. 333–356; 6 (1951), pp. 183–210.

    CAS  Google Scholar 

  11. J.L. Meijering and H.K. Hardy, Acta Metall., 4 (1956), pp. 249–256.

    Article  CAS  Google Scholar 

  12. J.L. Meijering, Acta Metall., 5 (1957), pp. 257–264.

    Article  CAS  Google Scholar 

  13. L. Kaufman and M. Cohen, Trans. AIME, 206 (8) (1956), pp. 1393–1401.

    Google Scholar 

  14. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (New York: Academic Press, 1970).

    Google Scholar 

  15. R. Kikuchi, Phys. Rev., 81 (1951), pp. 986–1003.

    Google Scholar 

  16. D. de Fontaine, Solid State Physics, 47 (1994), pp. 33–176.

    CAS  Google Scholar 

  17. E.A. Schoefer, Weld. J., Res. Suppl., 39 (1974), pp. s10-s12.

    Google Scholar 

  18. C.T. Sims, “Prediction of Phase Composition,” Superalloys II, eds. C.T. Sims, N.S. Stoloff, and W.C. Hagel (New York: John Wiley & Sons, 1987), pp. 217–240.

    Google Scholar 

  19. A. Engstrom, L. Höglund, and J. Ågren, Metall. Mater. Trans. A, 25A (1994), pp. 1127–1134.

    Google Scholar 

  20. H. Du and J. Ågren, Metall. Mater. Trans. A, 27A (1996), pp. 1073–1080.

    CAS  Google Scholar 

  21. M. Kajihara, C. Lim, and M. Kikuchi, ISIJ Inter., 33 (1993), pp. 498–507.

    CAS  Google Scholar 

  22. A. Engstrom, J.E. Morral and J. Ågren, Acta Mater., 45 (1997), p. 1189.

    Article  Google Scholar 

  23. T. Helander and J. Ågren, Metall. Mater. Trans. A, 28A (1997), pp. 303–308.

    Article  CAS  Google Scholar 

  24. J. Ågren, Scand. J. Met., 19 (1990), pp. 2–8.

    Google Scholar 

  25. Z.-K. Liu et al., Metall. Trans. A, 22A (1991), pp. 1745–1752.

    CAS  Google Scholar 

  26. T. Kraft, M. Rettenmayr, and H.E. Exner, Modelling Simul. Mater. Sch. Eng., 4 (1996), pp. 161–177.

    Article  CAS  Google Scholar 

  27. N. Saunders, Proc. 4th Decennial Int. Conf. Solidification Processing, ed. J. Beech and H. Jones (U.K.: University of Sheffield, 1997), pp. 362–366.

    Google Scholar 

  28. D.K. Banerjee et al., Proc. 4th Decennial Int. Conf. Solidification Processing, ed. J. Beech and H. Jones (U.K.: University of Sheffield, 1997), pp. 354–357.

    Google Scholar 

  29. A.T. Dinsdale, CALPHAD, 15 (1991), pp. 317–425.

    Article  CAS  Google Scholar 

  30. M. Hillert and L.-I. Staffansson, Acta Chem. Scand., 24 (1970), pp. 3618–3626.

    CAS  Google Scholar 

  31. F. Sommer, Z. Metallkd., 73 (1982), pp. 72–76.

    CAS  Google Scholar 

  32. C. Wagner und W. Schottky, Z. Phys. Chem., B11 (1930), pp. 163–210.

    Google Scholar 

  33. W.L. Bragg and E.J. Williams, Proc. Royal Soc. A, London, 145 (1934), pp. 699–730; 151 (1935), pp. 540–566.

    Article  Google Scholar 

  34. O. Redlich and A.T. Kister, Indust. Eng. Chem., 40 (1948), pp. 345–348.

    Article  Google Scholar 

  35. H.L. Lukas, J. Weiss, and E.-Th. Henig, CALPHAD, 6 (1982), pp. 229–251.

    Article  CAS  Google Scholar 

  36. B. Sundman and J. Ågren, J. Phys. Chem. Solids, 42 (1981), pp. 297–301.

    Article  CAS  Google Scholar 

  37. J.-O. Andersson et al., Acta Metall., 34 (1986), pp. 437–445.

    Article  CAS  Google Scholar 

  38. I. Ansara, B. Sundman, and P. Willemin, Acta Metall., 36 (1988), pp. 977–982.

    Article  CAS  Google Scholar 

  39. I. Ansara et al., J. Alloys Compd., 247 (1997), pp. 20–30.

    Article  CAS  Google Scholar 

  40. S.-L. Chen, C.R. Kao, and Y.A. Chang, Intermetallics, 3 (1995), pp. 233–242.

    Article  CAS  Google Scholar 

  41. M. Hillert, Physica, 103B (1981), pp. 31–40.

    Google Scholar 

  42. H.L. Lukas, E.-Th. Henig, and B. Zimmermann, CALPHAD, 1 (1977), pp. 225–236.

    Article  CAS  Google Scholar 

  43. D.W. Marquardt, J. Soc. Indust. Appl. Math., 11 (1963), pp. 431–441.

    Article  Google Scholar 

  44. E. Königsberger, CALPHAD, 15 (1991), pp. 69–78.

    Article  Google Scholar 

  45. M. Hillert, CALPHAD, 4 (1980), pp. 1–12.

    Article  CAS  Google Scholar 

  46. Y.-M. Muggianu, M. Gambino, and L.P. Bros, J. Chim. Phus., 72 (1975), pp. 85–88.

    Google Scholar 

  47. L. Kaufman and H. Nesor, CALPHAD, 2 (1978), pp. 325–348.

    Article  CAS  Google Scholar 

  48. H. Okamoto, J. Phase Equilibria, 14 (1993), pp. 257–259.

    Google Scholar 

  49. G. Eriksson and K. Hack, Metall. Trans. B, 21B (1990), pp. 1013–1023.

    CAS  Google Scholar 

  50. R.H. Davies et al., Applications of Thermodynamics in the Synthesis and Processing of Materials, eds. P. Nash and B. Sundman (Warrendale, PA: TMS, 1995), pp. 371–384.

    Google Scholar 

  51. B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD, 9 (1985), pp. 153–190.

    Article  CAS  Google Scholar 

  52. E. Königsberger and G. Eriksson, CALPHAD, 19 (1995), pp. 207–214.

    Article  Google Scholar 

  53. B. Sundman, User Aspects of Phase Diagrams, ed. F.H. Hayes (London, UK: Institute of Metals, 1991), pp. 130–139.

    Google Scholar 

  54. B. Sundman, Thermo-Calc Newsletter no. 18 (Stockholm, Sweden: Royal Institute of Technology, 1995).

    Google Scholar 

  55. U.R. Kattner, W.J. Boettinger, and S.R. Coriell, Z. Metallkd., 87 (1987), pp. 522–528.

    Google Scholar 

  56. J. Ågren, ISIJ International, 32 (1992), pp. 291–296.

    Google Scholar 

  57. G. Eriksson, H. Sippola, and B. Sundman, CALPHAD, 18 (1994), pp. 345–345.

    Google Scholar 

  58. SGTE Solution Database: SGTE (France: St. Martin d’Hères).

  59. Al-DATA, Fe-DATA, Ni-Data, Ti-DATA: ThermoTech Ltd. (U.K.: Surrey).

  60. C.W. Bale and G. Eriksson, Canad Metall Quarterly, 29 (1990), pp. 105–132.

    CAS  Google Scholar 

  61. C.W. Bale, “Web Sites in Inorganic Chemical Thermodynamics,” http://www.crct.polymtl.ca/fact/websites.html.

  62. L. Kaufman, ed., User Applications of Alloy Phase Diagrams (Metals Park, OH: ASM, 1987).

    Google Scholar 

  63. F.H. Hayes, ed., User Aspects of Phase Diagrams (London: IOM, 1991).

    Google Scholar 

  64. K. Hack, ed., The SGTE Casebook, Thermodynamics at Work (London: IOM, 1996).

    Google Scholar 

  65. U.R. Kattner and W.J. Boettinger, J. Electron. Mater., 23 (1994), pp. 603–610.

    CAS  Google Scholar 

  66. N. Saunders, Materials Science Forum, 217–222 (1996), pp. 667–672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article can be found at http://www.tms.org/pubs/journals/JOM/9712/Kattner-9712.html.

Author’s Note: In this article, commercial products are identified as examples. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that they are necessarily the best available for the purpose.

Ursula R. Kattner earned her Ph.D. in metallurgy at the University of Stuttgart, Germany, in 1982. She is currently a physical scientist at the National Institute of Standards and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kattner, U.R. The thermodynamic modeling of multicomponent phase equilibria. JOM 49, 14–19 (1997). https://doi.org/10.1007/s11837-997-0024-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-997-0024-5

Keywords

Navigation