Skip to main content
Log in

The thermal conductivity of metallic ceramics

  • Overview
  • Thermal Management
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Transition metal carbides, nitrides, and borides can be called metallic ceramics because they are electronically conductive and extremely hard. Their various applications include cutting and grinding tools, thermal-barrier coatings, diffusion-resistant thin films, interconnects, and superconductivity devices. In each case, the ability of the material to resist or permit heat flow is important. Because of the high concentration of nonmetal atom vacancies in the carbides and nitrides, the carriers of heat—conduction electrons and phonons (the quanta of lattice waves)—are severely scattered, and the thermal conductivity, K, is strongly affected, although differently in high- and low-temperature regions. Measurements of both the electrical and thermal conductivity of single-crystal metallic ceramics at low temperatures and the application of the Callaway formalism help explain the puzzling temperature dependence of K. The finding of a large peak in K of NbC just below its superconducting transition temperature confirms phonon-electron scattering and could lead to a thermal switch. The single-crystal thermal conductivity behavior of TiC and WC is used to interpret the measured K values for cemented carbides TiC/Ni-Mo and WC/Co through a broad temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.O. Pierson, Handbook of Refractory Carbides and Nitrides (Westwood, NJ: Noyes Publications, 1996).

    Google Scholar 

  2. R.E. Taylor, J. Am. Ceram. Soc., 44 (1961), p. 525.

    Article  CAS  Google Scholar 

  3. R.E. Taylor, J. Am. Ceram. Soc., 45 (1962), pp. 353–354.

    Article  CAS  Google Scholar 

  4. W.S. Williams, J. Am. Ceram. Soc., 49 (1966), pp. 156–159.

    Article  CAS  Google Scholar 

  5. W.S. Williams, Phys. Rev., 135 (1964), pp. A505-A510.

    Article  Google Scholar 

  6. P.G. Klemens, Phys. Rev., 119 (1960), pp. 507.

    Article  CAS  Google Scholar 

  7. J. Bethin and W.S. Williams, J. Am. Ceram. Soc., 60 (1977), pp. 424–427.

    Article  CAS  Google Scholar 

  8. RE. Taylor and J. Morreale, J. Am. Ceram. Soc., 47 (1964), pp. 69–73.

    Article  CAS  Google Scholar 

  9. L.G. Radosevich and W.S. Williams, Phys. Rev., 181 (1969), pp. 111–1117.

    Article  Google Scholar 

  10. L.G. Radosevich and W.S. Williams, J. Am. Ceram. Soc., 53 (1970), pp. 30–33.

    Article  CAS  Google Scholar 

  11. A.B. Pippard, Phil. Mag., 46 (1955), pp. 1104–1114 and J.M. Ziman, Electrons and Phonons (Oxford, UK: Clarendon Press, 1960).

    CAS  Google Scholar 

  12. D.T. Morelli, Phys. Rev. B, 44 (1991), pp. 5453–5458.

    Article  CAS  Google Scholar 

  13. L.G. Radosevich and W.S. Williams, Phys. Rev., 188 (1969), pp. 77–773.

    Article  Google Scholar 

  14. J. Bardeen, G. Rickayzen, and T.L. Tewordt, Phys. Rev., 113 (1959), pp. 982.

    Article  CAS  Google Scholar 

  15. C. Uher, J. Supercond., 3 (1990), pp. 337.

    Article  CAS  Google Scholar 

  16. V.S. Nesphor and S.S. Ordan’yan, Neog Mater., 1 (1996), pp. 480. See also G.S. Upadhaya, Nature of Properties of Refractory Carbides (Commack, NY: Nova Science Publishers, 1996), p. 286.

    Google Scholar 

  17. B. Chakraborty and P.B. Allen, Phys. Rev. Lett., 42 (1979), pp. 736–738.

    Article  CAS  Google Scholar 

  18. G.S. Upadhaya, Nature of Properties of Refractory Carbides (Commack, NY: Nova Science Publishers, 1996), p. 285.

    Google Scholar 

  19. M.V. Frandsen and W.S. Williams, J. of Hard Materials, 1 (1990), pp. 159–167.

    CAS  Google Scholar 

  20. M.V. Frandsen and W.S. Williams, J. Am. Ceram. Soc., 76 (1991) pp. 1411–1416.

    Article  Google Scholar 

  21. A Perecherla and W.S. Williams, J. Am. Ceram. Soc., 71 (1988), pp. 1130–1133.

    Article  CAS  Google Scholar 

  22. K Bachman and W.S. Williams, J. Appl. Phys., 42 (1971), p. 4407.

    Google Scholar 

Download references

Authors

Additional information

Wendell S. Williams earned his Ph.D. in physics at Cornell University in 1956. He was a research physicist with Union Carbide Corporation, a professor of physics and ceramic engineering at the University of Illinois, and department chair of materials science and engineering at Case Western Reserve University. Dr. Williams, now retired, is a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, W.S. The thermal conductivity of metallic ceramics. JOM 50, 62–66 (1998). https://doi.org/10.1007/s11837-998-0131-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0131-y

Keywords

Navigation