Skip to main content

Advertisement

Log in

Recent titanium R&D for biomedical applications in japan

  • Overview
  • Titanium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium alloys composed of nontoxic elements are being studied in Japan for use in biomedical applications. The alloys being studied are primarily α + ß- and ß-type titanium alloys. Areas of research include surface treatments to improve biocompatibility and methods of preventing fretting fatigue, a primary cause of failure in biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Steinemann, “Corrosion of Surgical Implants—in Vivo and in Vitro Tests,” Evaluation of Biomaterials, ed. G.D. Winter, J.L. Leray, and K. de Groot (New York: Wiley, 1980), pp. 1–34.

    Google Scholar 

  2. H. Kawahara, “Cytotoxicity of Implantable Metals and Alloys,” Bull Japan Inst. Metals, 31 (12) (1992), pp. 1033–1039.

    Google Scholar 

  3. N. Yukawa et al., “Alloy Design of Superalloys by the delectron Concept,” Proc. High Temperature Alloys for Gas Turbines and Other Applications (Belgium: Commission of European Communities, 1986), pp. 1–9.

    Google Scholar 

  4. M. Morinaga, N. Yukawa, and H. Adachi, “Electronic Structure and Phase Stability of Titanium Alloys,” J. Iron and Steel Inst. Japan, 72 (6) (1986), pp. 555–562.

    CAS  Google Scholar 

  5. Y. Ito et al., “New Titanium Alloys for Medical Implants,” Proc. Titanium ′95: Science and Technology, ed. P.A. Blenkinsop, W.J. Evans, and H.M. Flower (London: IOM, 1995), pp. 776–1783.

    Google Scholar 

  6. Y. Okazaki et al., “Mechanical Properties and Corrosion Fatigue of New Titanium Alloys for Medical Implants in Physiological Saline Solution,” J. Japan Inst. Metals, 59 (10) (1995), pp. 1078–1085.

    CAS  Google Scholar 

  7. M. Niinomi et al., “New ß-Type Titanium Alloys with High Biocompatibility,” Non-Aerospace Applications of Titamium, ed. F.H. Froes, P.G. Allen, and M. Niinomi (Warrendale, PA: TMS, 1998), pp. 217–223.

    Google Scholar 

  8. S. Yoshitani et al., “Mechanical Properties of ß-Type Alloys with High Biocompatibility Fabricated by Powder Metallurgy Processing,” CAMP, ISIJ, 12 (1) (1999), p. 540.

    Google Scholar 

  9. E. Kobayashi et al., “Evaluation of Mechanical Properties of Dental Casting Ti-Zr Based Alloys,” J. Japanese Soc. Dental Materials and Devices, 14 (3) (1995), pp. 321–328.

    Google Scholar 

  10. E. Kobayashi et al., “Alloy—Design of Titanium-Zironium Based Alloys Containing Niobium as Biomedical Materials,” Proc. Fifth World Biomaterials Congress (Toronto, Canada: Univ. of Toronto Press, 1996), pp. 481–482.

    Google Scholar 

  11. E. Kobayashi et al., “Castability and Mechanical Properties of Ti-6Al-7Nb Alloy Dental-Cast,” J. Japanese Soc. Dental Materials and Devices, 14 (4), (1995), pp. 406–413.

    Google Scholar 

  12. K. Kato et al., “On the Adhesiveness between Ti-40wt%Zr Alloy and the Thermosetting Facing Resin,” J. Japanese Soc. Dental Materials and Devices, Special Issue 33, 18 (1999), p. 121.

    Google Scholar 

  13. H. Hamanaka et al., “Corrosion Resistance and Mechanical Properties of Cast Ti-5Al-13Ta Alloys,” J. Japanese Soc. Dental Materials and Devices, Special Issue 31, 17 (1998), p. 88.

    Google Scholar 

  14. K. Narita et al., “Fracture Toughness Characteristic of Cast Pure Titanium and Titanium Alloy,” J. Japanese Soc. Dental Materials and Devices, Special Issue 31, 17 (1998), p. 90.

    Google Scholar 

  15. E. Kobayashi et al., “Structure Control of Ti-Zr Biomedical Implant Alloys,” J. Japanese Soc. Dental Materials and Devices, Special Issue 26 (1995), pp. 78–79.

    Google Scholar 

  16. T. Hanawa, “Surface Modification of Metallic Bio-materials,” Materia Japan, 37 (19) (1988), pp. 853–855.

    Google Scholar 

  17. M. Yoshinari, K. Ozeki, and T. Sumii, “Properties of Hydroxyapatite-Coated Ti-6Al-4V Alloy Produced by the Ion-Plating Method,” Bull. Tokyo Dent. Coll., 32 (1991), pp. 147–156.

    CAS  Google Scholar 

  18. M. Yoshinari et al., “Influence of Rapid Heating with Infrared Radiation on RF Magnetron Sputtered Calcium Phosphate Coatings,” J. Biomed. Mater. Res., 37 (1997), pp. 60–67.

    Article  CAS  Google Scholar 

  19. T. Kasuga and Y. Abe, “Calcium Phosphate Invert Glasses with Soda and Titania,” J. Non-Crystalline Solids, 243 (1999), pp. 70–74.

    Article  CAS  Google Scholar 

  20. H.-M. Kim et al., J. Biome. Mater. Res., 34 (1996), p. 409.

    Article  Google Scholar 

  21. T. Hanawa et al., “Surface Modification of Titanium in Calcium-Ion-Containing Solutions,” J. Biomed Mater. Res., 34 (1997), p. 273.

    Article  CAS  Google Scholar 

  22. T. Hanawa, S. Kihara, and K. Murakami, ASTM STP 1196 (1994), pp. 170–184.

  23. S. Fukumoto et al., Abstract Booklet of Xi’an Int. Titanium Conf. (1998), p. 84.

  24. N. Maruyama, T. Kobayashi, and M. Sumita, “Fretting Fatigue Strength of a Ti-6Al-4V Alloy in a Pseudo-Body-Fluid and Quantitative Analyses of the Substances in the Fluids,” J. Japanese Soc. Biomaterials, 13 (1) (1995), pp. 14–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author’s Note: All compositions are given in mass percent unless otherwise noted.

For more information, contact M. Niinomi, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan; telephone 81532-44-6706; fax 81-532-44-6690; e-mail niinomi@sp-Mac4.tutpse.tut.ac.jp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niinomi, M. Recent titanium R&D for biomedical applications in japan. JOM 51, 32–34 (1999). https://doi.org/10.1007/s11837-999-0091-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0091-x

Keywords

Navigation