Skip to main content
Log in

Triplet extensions I: Semibounded operators in the scale of Hilbert spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The extension theory for semibounded symmetric operators is generalized by including operators acting in a triplet of Hilbert spaces. We concentrate our attention on the case where the minimal operator is essentially self-adjoint in the basic Hilbert space and construct a family of its self-adjoint extensions inside the triplet. All such extensions can be described by certain boundary conditions, and a natural counterpart of Krein’s resolvent formula is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. I and II, Pitman, Boston, Mass.-London, 1981.

    MATH  Google Scholar 

  2. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, 2nd edition. With an appendix by Pavel Exner. AMS Chelsea Publishing, Providence, RI, 2005.

    MATH  Google Scholar 

  3. S. Albeverio and P. Kurasov, Rank one perturbations, approximations, and self-adjoint extensions, J. Funct. Anal. 148 (1997), 152–169.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Albeverio and P. Kurasov, Rank one perturbations of not semibounded operators, Integral Equations Operator Theory 27 (1997), 379–400.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  6. A. Alonso and B. Simon, The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory 4 (1980), 251–270.

    MATH  MathSciNet  Google Scholar 

  7. F. A. Beresin and L. D. Faddeev, A remark on Schrödinger equation with a singular potential, Sov. Math. Doklady 137 (1961), 1011–1014.

    Google Scholar 

  8. Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

  9. M. S. Birman, On the self-adjoint extensions of positive definite operators, Mat. Sb. (N.S.) 38(80) (1956), 431–456.

    MathSciNet  Google Scholar 

  10. J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc. 45 (1939), 369–442.

    Article  MATH  MathSciNet  Google Scholar 

  11. Yu. Demkov and V. Ostrovsky, Zero-range Potentials and their Applications in Atomic Physics, Plenum, New York, 1988.

    Google Scholar 

  12. A. Dijksma, P. Kurasov and Yu. Shondin, High order singular rank one perturbations of a positive operator, Integral Equations Operator Theory 53 (2005), 209–245.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Dijksma, H. Langer, A. Luger and Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class \( \mathcal{N}_\kappa \), Integral Equations Operator Theory 36 (2000), 121–125.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Dijksma, H. Langer, Yu. Shondin and C. Zeinstra, Self-adjoint operators with inner singularities and Pontryagin spaces, in Operator Theory and Related Topics, vol. II, Biräuser, Basel, 2000, pp. 105–175.

    Google Scholar 

  15. A. Dijksma and Yu. Shondin, Singular point-like perturbations of the Laguerre operator in a Pontryagin space, in Operator Methods in Ordinary and Partial Differential Equations, Birkhäuser, Basel, 2002, pp. 141–18.

    Google Scholar 

  16. E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate, Ricerca Scientifica, 7 (1936), 13–52, English translation in E. Fermi, Collected Papers, Vol. I, Italy 1921–1938, University of Chicago Press, Chicago, 1962, pp. 980–1016.

    Google Scholar 

  17. F. Gesztesy and B. Simon, Rank one perturbations at infinite coupling, J. Funct. Anal. 128 (1995), 245–252.

    Article  MATH  MathSciNet  Google Scholar 

  18. Yu. E. Karpeshina, Zero-range model of p-scattering by a potential well, Forschungsinstitut für Mathematik, ETH, Zürich, 1992, preprint.

    Google Scholar 

  19. A. Kiselev and B. Simon, Rank one perturbations with infinitesimal coupling, J Funct. Anal. 130 (1995), 345–356.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Krein, On Hermitian operators whose deficiency indices are 1, C. R. (Doklady) Acad. Sci. URSS (N.S.) 43 (1944), 323–326.

    MathSciNet  Google Scholar 

  21. M. Krein, The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications, I, Rec. Math. (Mat. Sb.) 20(62) (1947), 431–495.

    MathSciNet  Google Scholar 

  22. P. Kurasov, \( \mathcal{H}_{ - n} \)-perturbations of self-adjoint operators and Krein’s resolvent formula, Integral Equations Operator Theory 45 (2003), 437–460.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Kurasov, Singular and supersingular perturbations: Hilbert space methods, in Spectral Theory of Schrödinger Operators, Amer. Math. Soc., Providence, RI, pp. 185–216.

  24. P. Kurasov and A. Luger, Singular differential operator: Titchmarsh-Weyl coefficients and operator models, Report N8, Dept. of Math., Lund Univ., 2007.

  25. P. Kurasov and K. Watanabe, On rank one \( \mathcal{H}_{ - 3} \)-perturbations of positive self-adjoint operators, in Stochastic Processes, Physics and Geometry: New Interplays, II, Amer. Math. Soc., Providence, 2000, pp. 413–422.

    Google Scholar 

  26. P. Kurasov and K. Watanabe, On \( \mathcal{H}_{ - 4} \)-perturbations of self-adjoint operators, in Partial Differential Equations and Spectral Theory, Birkhäuser, Basel, 2001, pp. 179–196.

    Google Scholar 

  27. J. von Neumann, Allgemeine Eigenwettheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929–30), 49–131.

    Article  MATH  Google Scholar 

  28. B. Pavlov, The theory of extensions and explicitly solvable models, Uspekhi Mat. Nauk 42 (1987), 99–131.

    MATH  MathSciNet  Google Scholar 

  29. B. Pavlov, Boundary conditions on thin manifolds and the semiboundedness of the three-body Schrödinger operator with point potential, Mat. Sb. (N.S.) 136(178) (1988), 163–177.

    Google Scholar 

  30. M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1972.

  31. B. Simon, Spectral analysis of rank one perturbations and applications, CRM Proceedings and Lecture Notes 8 (1995), 109–149.

    Google Scholar 

  32. M. Vishik, On general boundary condition for elliptic differential equation, Trudy Moskov. Mat. Obshch. 1 (1952), 187–246.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kurasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurasov, P. Triplet extensions I: Semibounded operators in the scale of Hilbert spaces. J Anal Math 107, 251–286 (2009). https://doi.org/10.1007/s11854-009-0011-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-009-0011-6

Keywords

Navigation