Skip to main content
Log in

Remez-type inequality for discrete sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The classical Remez inequality bounds the maximum of the absolute value of a polynomial P(x) of degree d on [−1, 1] through the maximum of its absolute value on any subset Z of positive measure in [−1, 1]. Similarly, in several variables the maximum of the absolute value of a polynomial P(x) of degree d on the unit cube Q n1 ⊂ ℝn can be bounded through the maximum of its absolute value on any subset ZQ n1 of positive n-measure. The main result of this paper is that the n-measure in the Remez inequality can be replaced by a certain geometric invariant ω d (Z) which can be effectively estimated in terms of the metric entropy of Z and which may be nonzero for discrete and even finite sets Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Andrievskii, Local Remez-type inequalities for exponentials of a potential on a piecewise analytic arc, Journal d’Analyse Mathématique 100 (2006), 323–336.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bernstein, Sur la limitation des valeurs d’un polynôme P n(x) de degré n sur tout un segment par ses vleurs en n + 1 points du segment, Proceedings of the Academy of Sciences USSR 7 (1931), no. 8 1025–1050.

    Google Scholar 

  3. A. S. Besicovitch and J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, Journal of the London Mathematical Society 29 (1954), 449–459.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Brudnyi, On a BMO-property for subharmonic functions, The Journal of Fourier Analysis and Applications 8 (2002), 603–612.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Brudnyi, On covering numbers of sublevels sets of analytic functions, Journal of Approximation Theory 162 (2010), 72–93.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Brudnyi and Yu. Brudnyi, Remez type inequalities and Morrey-Campanato spaces on Ahlfors regular sets, Contemporary Mathematics 445 (2007), 19–44.

    Article  MathSciNet  Google Scholar 

  7. Yu. Brudnyi and M. Ganzburg, On an extremal problem for polynomials of n variables, Mathematics of the USSR-Izvestiya 37 (1973), 344–355.

    MathSciNet  Google Scholar 

  8. D. Coppersmith and T. J. Rivlin, The growth of polynomials bounded at equally spaced points, SIAM Journal on Mathematical Analysis 23 (1992), 970–983.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Crane, The areas of polynomial images and pre-images, The Bulletin of the London Mathematical Society 36 (2004), 786–792.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Erdelyi, Remez-type inequalities and their applications, Journal of Computational and Applied Mathematics 47 (1993), 167–209.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Second edition, Wiley, Hoboken, NJ, 2003, xxviii+337 pp.

    Book  MATH  Google Scholar 

  12. J. Favard, Sur l’interpolation, Bulletin de la Société Mathématique de France 67 (1939), 103–113.

    Google Scholar 

  13. A. N. Kolmogorov and V. M. Tihomirov, ɛ-entropy and ɛ-capacity of sets in functional space, American Mathematical Society Translations 17 (1961), 277–364.

    MathSciNet  Google Scholar 

  14. G. Kozma, Z. Lotker and G. Stupp, The minimal spanning tree and the upper box dimension, Proceedings of the American Mathematical Society 134 (2006), 1183–1187.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Lapidus and M. van Frankenhuysen, Fractal Geometry and Number Theory, Birkhauser, Basel, 2000.

    MATH  Google Scholar 

  16. R. Lorentz, Multivariate Birkhoff Interpolation, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  17. D. S. Lubinsky, Small values of polynomials, Proceedings of the American Mathematical Society 127 (1999), 529–536.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Nadler, private communication.

  19. F. Nazarov, M. Sodin and A. Volberg, Lower bounds for quasianalytic functions. I. How to control smooth functions, Mathematica Scandinavica 95 (2004), 59–79.

    MathSciNet  MATH  Google Scholar 

  20. W. Plesniak, Volume of polynomial lemniscates in C n, Numerical Algorithms 33 (2003), 415–420.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. A. Rakhmanov, Bounds for polynomials with a unit discrete norm, Annals of Mathematics (2) 165 (2007), 55–88.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. J. Remez, Sur une propriété des polynômes de Tchebycheff, Comm. Inst. Sci. Kharkov 13 (1936) 93–95.

    Google Scholar 

  23. A. G. Vitushkin, O mnogomernyh Variaziyah, Gostehisdat, Moscow, 1955.

    Google Scholar 

  24. Y. Yomdin, Beta-spread of sets in metric spaces and critical values of smooth functions, Preprint, MPI Bonn, 1983.

  25. Y. Yomdin, Beta-spread of sets in metric spaces and critical values of smooth functions, Operator Theory: Advances and Applications 197 (2009), 375–389.

    MathSciNet  Google Scholar 

  26. Y. Yomdin and G. Zahavi, High-order processing of singular data, in Non-Commutativity and Singularities, Advanced Studies in Pure Mathematics, Vol. 55, Math. Soc. Japan, Tokyo, 2009, pp. 173–207.

    Google Scholar 

  27. A. Zeriahi, A minimum principle for plurisubharmonic functions, Indiana University Mathematics Journal 56 (2007), 2671–2696.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yomdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yomdin, Y. Remez-type inequality for discrete sets. Isr. J. Math. 186, 45–60 (2011). https://doi.org/10.1007/s11856-011-0131-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0131-4

Keywords

Navigation