Skip to main content
Log in

The inverse Fueter mapping theorem in integral form using spherical monogenics

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove an integral representation formula for the inverse Fueter mapping theorem for monogenic functions defined on axially symmetric open sets U ⊆ ℝn+1, i.e. on open sets U invariant under the action of SO(n), where n is an odd number. Every monogenic function on such an open set U can be written as a series of axially monogenic functions of degree k, i.e. functions of type \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x) = \left[ {A\left( {x_{0,\rho } } \right) + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\omega } {\rm B}\left( {x_{0,\rho } } \right)} \right]\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )\), where A(x 0, ρ) and B(x 0, ρ) satisfy a suitable Vekua-type system and \(\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )\) is a homogeneous monogenic polynomial of degree k. The Fueter mapping theorem says that given a holomorphic function f of a paravector variable defined on U, then the function \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )\) given by

$$\Delta ^{k + \tfrac{{n - 1}} {2}} \left( {f(x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )} \right) = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$

is a monogenic function. The aim of this paper is to invert the Fueter mapping theorem by determining a holomorphic function f of a paravector variable in terms of \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )\). This result allows one to invert the Fueter mapping theorem for any monogenic function defined on an axially symmetric open set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Research Notes in Mathematics, Pitman, Boston, MA, Vol. 76, 1982.

    MATH  Google Scholar 

  2. F. Colombo and I. Sabadini, A structure formula for slice monogenic functions and some of its consequences, in Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, Basel, 2009, pp. 101–114.

    Google Scholar 

  3. F. Colombo and I. Sabadini, The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators, Journal of Mathematical Analysis and Applications 373 (2011), 655–679.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004.

    Google Scholar 

  5. F. Colombo, I. Sabadini and F. Sommen, The Fueter mapping theorem in integral form and the F-functional calculus, Mathematical Methods in the Applied Sciences 33 (2010), 2050–2066.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem, Communications on Pure and Applied Analysis 10 (2011), 1165–1181.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Colombo, I. Sabadini and D. C. Struppa, Slice monogenic functions, Israel Journal of Mathematics 171 (2009), 385–403.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Colombo, I. Sabadini and D. C. Struppa, An extension theorem for slice monogenic functions and some of its consequences, Israel Journal of Mathematics 177 (2010), 369–389.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Colombo, I. Sabadini, D. C. Struppa, A new functional calculus for noncommuting operators, Journal of Functional Analysis 254 (2008), 2255–2274.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions, Journal für die Reine und Angewandte Mathematik 645 (2010), 85–104.

    MathSciNet  MATH  Google Scholar 

  11. F. Colombo, I. Sabadini and D. C. Struppa, Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, Vol. 289, Birkhäuser, 2011, VI, 222 pp., ISBN: 978-3-0348-0109-6.

  12. A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions, Journal of Mathematical Analysis and Applications 179 (1993), 610–629.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-valued Functions, Mathematics and Its Applications, Vol. 53, Kluwer Academic Publishers, Dordrecht, 1992.

    Google Scholar 

  14. R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Commentarii Mathematici Helvetici 7 (1934), 307–330.

    Article  MathSciNet  Google Scholar 

  15. R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Advances in Mathematics 226 (2011), 1662–1691.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. E. Gilbert, M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics, Vol. 26, Cambridge University Press, 1991.

  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Mathematics / Engineering, Sixth Edition, Academic Press, New York, 2000.

    MATH  Google Scholar 

  18. K. Gürlebeck, K. Habetha and W. Sprößig, Holomorphic Functions in the Plane and n-dimensional space, Birkhäuser, Basel, 2008.

    MATH  Google Scholar 

  19. H. Hochstadt, The Functions of Mathematical Physics, Pure Mathematics and Applications, Vol. 23, Wiley-Interscience, New York, 1971.

    Google Scholar 

  20. K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter’s theorem, Methods and Applications of Analysis 9 (2002), 273–290.

    MathSciNet  MATH  Google Scholar 

  21. D. Pena-Pena, Cauchy-Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis, PhD Dissertation, Gent, 2008.

  22. D. Pena-Pena, T. Qian and F. Sommen, An alternative proof of Fueter’s theorem, Complex Variables and Elliptic Equations 51 (2006), 913–922.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Qian, Generalization of Fueter’s result ton+1, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 8 (1997), 111–117.

    MathSciNet  MATH  Google Scholar 

  24. T. Qian, Fourier analysis on a starlike Lipschitz aurfaces, Journal of Functional Analysis 183 (2001), 370–412.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space, Mathematische Annalen 310 (1998), 601–630.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali 23 (1957), 220–225.

    MathSciNet  Google Scholar 

  27. F. Sommen, On a generalization of Fueter’s theorem, Zeitschrift für Analysis und ihre Anwendungen. Journal for Analysis and its Applications 19 (2000), 899–902.

    MathSciNet  MATH  Google Scholar 

  28. F. Sommen, Plane elliptic monogenic functions in symmetric domains, Rendiconti del Circolo Matematico di Palermo 2 (1984), 259–269.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, F., Sabadini, I. & Sommen, F. The inverse Fueter mapping theorem in integral form using spherical monogenics. Isr. J. Math. 194, 485–505 (2013). https://doi.org/10.1007/s11856-012-0090-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0090-4

Keywords

Navigation