Skip to main content
Log in

Uniform distribution of prime powers and sets of recurrence and van der Corput sets in ℤk

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We establish new results on sets of recurrence and van der Corput sets in ℤk which refine and unify some of the previous results obtained by Sárkőzy, Furstenberg, Kamae and Mèndes France, and Bergelson and Lesigne. The proofs utilize a general equidistribution result involving prime powers which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bergelson, Sets of recurrence ofm-actions and properties of sets of differences inm, Journal of the London Mathematical Society 31 (1985), 295–304.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Bergelson, A density statement generalizing Schur’s theorem, Journal of Combinatorial Theory. Series A 43 (1986), 338–343.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Bergelson, Ergodic Ramsey theory, in Logic and Combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1987, pp. 63–87.

    Chapter  Google Scholar 

  4. V. Bergelson, Ergodic Ramsey theory—an update, in Ergodic Theory ofd Actions (Warwick, 1993–1994), London Mathematical Society Lecture Note Series, Vol. 228, Cambridge University Press, Cambridge, 1996, pp. 1–61.

    Google Scholar 

  5. V. Bergelson, H. Furstenberg and R. McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory and Dynamical Systems 16 (1996), 963–974.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Bergelson and I. Hålland, Sets of recurrence and generalized polynomials, in Convergence in Ergodic theory and Probability (Columbus, OH, 1993), Ohio State University Mathematical Research Institute Publication, Vol. 5, de Gruyter, Berlin, 1996, pp. 91–100.

    Chapter  Google Scholar 

  7. V. Bergelson and I. Hålland Knutson, Weak mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory and Dynamical Systems 29 (2009), 1375–1416.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Bergelson and E. Lesigne, Van der Copurt sets ind, Colloquium Mathematicum 110 (2008), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bertrand-Mathis, Ensembles intersectifs et récurrence de Poincaré, Israel Journal of Mathematics 55 (1986), 184–198

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Memoirs of the American Mathematical Society 146 (2000).

  11. J. Bourgain, Ruzsa’s problem on sets of recurrence, Israel Journal of Mathematics 59 (1987), 151–166

    Article  MathSciNet  Google Scholar 

  12. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, Vol. 1651, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  13. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arighmetic progressions, Journal d’Analyse Mathématique 31 (1977), 204–256.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  15. S. W. Graham and G. Kolesnik, Van der Corput’s Method of Exponential Sums, London Mathematical Society Lecture Note Series, Vol. 126, Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  16. D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, Journal of Number Theory 16 (1983), 242–266.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. K. Hua, Method of trigonometric sums and its application in number theory, in Selected Papers, Springer, New York, 1983, pp. 124–135.

    Google Scholar 

  18. A. A. Karatsuba, Basic Analytic Number Theory, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  19. T. Kamae and M. Mendès France, Van der Corput’s difference theorem, Israel Journal of Mathematics 31 (1977), 335–342.

    Article  Google Scholar 

  20. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, New York, 1974.

    MATH  Google Scholar 

  21. R. McCutcheon, Three results in recurrence, in Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993), London Mathematical Society Lecture Note Series, Vol. 205, Cambridge University Press, Cambridge, 1995, pp. 349–358.

    Google Scholar 

  22. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, Vol. 84, American Mathematical Society, Providence, RI, 1994.

    MATH  Google Scholar 

  23. J. Pintz, W. L. Steiger and E. Szemerédi, On sets of natural numbers whose difference set contains no squares, Journal of the London Mathematical Society 37 (1988), 219–231.

    Article  MATH  Google Scholar 

  24. G. Rhin, Sur la répartition modulo 1 des suites f(p), Acta Arithmetica 23 (1973), 217–248.

    MathSciNet  MATH  Google Scholar 

  25. I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, in Topics in Classical Number Theory, Vol. I, II (Budapest, 1981), Colloquia Mathematica Societatis János Bolyai, Vol. 34, North-Holland, Amsterdam, 1984, pp. 1419–1443.

    Google Scholar 

  26. A. Sárkőzy, On difference sets of sequences of integers. I, Acta Mathematica Academiae Scientiarum Hungaricae 31 (1978), 125–149.

    Article  MathSciNet  Google Scholar 

  27. A. Sárkőzy, On difference sets of sequences of integers. II, Annales Universitatis Scientarum Budapstinensis de Rolando Eötvös Nomonatae. Sectio Mathematica 21 (1978), 45–53.

    Google Scholar 

  28. A. Sárkőzy, On difference sets of sequences of integers. III, Acta Mathematica Academiae Scientiarum Hungaricae 31 (1978), 355–386.

    Article  MathSciNet  Google Scholar 

  29. S. Srinivasan and R. F. Tichy, Uniform distribution of prime power sequences, Österreichische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Anzeiger 130 (1993), 33–36.

    MathSciNet  MATH  Google Scholar 

  30. I. M. Vinogradov, The Method of Trigonometric Sums in the Theory of Numbers, Dover Publications, New York, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Bergelson.

Additional information

The first author gratefully acknowledges the support of the NSF under grant DMS-1162073.

The last author gratefully acknowledges the support of the FWF under grant p26114.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergelson, V., Kolesnik, G., Madritsch, M. et al. Uniform distribution of prime powers and sets of recurrence and van der Corput sets in ℤk . Isr. J. Math. 201, 729–760 (2014). https://doi.org/10.1007/s11856-014-1049-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1049-4

Keywords

Navigation