Skip to main content
Log in

Influences of CAS and GC in early algebra

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In the last years, several studies have investigated the role of technology in teaching and learning mathematics. However, the specific role of computer algebra systems (CAS) in early algebra in contrast to graphic calculators (GC) is still unclear. The CAYEN project is researching this field by comparing 13-year-old pupils—one GC class and two CAS classes have been observed while acquiring elementary algebraic competences with nearly the same teaching sequence. The field of algebraic competences is split into syntactic abilities and symbol sense. The results of this explorative case study show that the development of symbol sense is influenced by the adoption of CAS in the learning process. Especially when transitioning from arithmetic to algebra, the pupils’ views of algebra as well as their conceptions of algebraic objects seem to be affected by the availability of CAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24–35.

    Google Scholar 

  • Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 50–55.

    Google Scholar 

  • Barzel, B., Drijvers, P., Maschietto, M., & Trouche, L. (2005a). Tools and technologies in mathematical didactics. In M. Bosch (ed.), Proceedings of CERME 4.

  • Barzel, B., Hußmann, S., & Leuders, T. (2005b). Internet & Co im Mathematikunterricht Computer. Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Bell, A. (1996). Problem solving aspects to algebra. Two aspects. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra. Perspectives for Research and Teaching (pp. 167–185). Dordrecht: Kluwer.

    Google Scholar 

  • Boers-van Oosterum, M. A. M. (1990). Understanding of variables and their uses acquired by students in traditional and computer-intensive algebra. Dissertation. MA: University of Maryland.

  • Brown, R. (1998). Using computer algebra systems to introduce algebra. The International Journal of Computer Algebra in Mathematics Education, 5, 147–160.

    Google Scholar 

  • Buchberger, B. (1990). Should students learn integration rules? Sigsam Bulletin, 24(1), 10–17.

    Article  Google Scholar 

  • Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41, 143–163.

    Article  Google Scholar 

  • Drijvers, P. (2003). Learning algebra in a computer algebra environment. Utrecht: CD-ß Press.

    Google Scholar 

  • Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 363–392). Charlotte, NC: Information Age.

    Google Scholar 

  • Fey, J. T. (1990). Quantity. In L. A. Steen (Ed.), On the shoulders of giants (pp. 61–94). Washington, DC: National Academy Press.

    Google Scholar 

  • Fischer, R. (2007). Technology, mathematics and consciousness of society. In U. Gellert, E. Jablonka (Eds.), Mathematisation and demathematisation. Social, political and ramifications (pp. 67–80). Rotterdam: Sense Publishers.

  • Fuglestad, A. B. (2006). Students’ choice of tasks and tools in an ICT rich environment. In Contribution to the CERME4 conference.

  • Fujii, T. (2003). Probing students’ understanding of variables through cognitive conflict: Is the concept of a variable so difficult for students to understand? In N. A. Pateman, et al. (Eds.), Proceedings of the 27th annual meeting of the international group for the psychology of mathematics education (PME).

  • Hefendehl-Hebeker, L. (2008). Wege zur Formelsprache—Entwicklung algebraischen Denkens als didaktische Aufgabe. Unikate, 33, 66–71.

    Google Scholar 

  • Heugl, H., Klinger, W., & Lechner, J. (1996). Mathematikunterricht mit Computeralgebrasystemen—Ein didaktisches Lehrerbuch mit Erfahrungen aus dem österreichischen Derive-Projekt. Bonn: Addison-Wesley.

    Google Scholar 

  • Hoch, M. (2003). Structure sense. In Contribution to the CERME3 conference.

  • Irwin, K., & Britt, M. (2007). The development of algebraic thinking: Results of a three-year study. In Ministry of Education (Ed.), Findings from the New Zealand Numeracy Development Projects 2006 (pp. 33–43). Wellington: Learning Media Ltd.

  • Kaput, J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). New York: Macmillan.

    Google Scholar 

  • Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40, 173–196.

    Article  Google Scholar 

  • Malle, G. (1993). Didaktische Probleme der elementaren Algebra. Braunschweig/Wiesbaden: Vieweg.

    Google Scholar 

  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra, perspectives for research and teaching (pp. 65–86). Dordrecht: Kluwer.

    Google Scholar 

  • Monaghan, J. (2005). Computer algebra, instrumentation and the anthropological approach. In Proceedings of CAME4.

  • Moser-Opitz, E. (2002). Zählen, Zahlbegriff, Rechnen. Bern: Haupt.

    Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht: Kluwer.

    Google Scholar 

  • Pierce, R. V., & Stacey, K. C. (2002). The algebra needed to use computer algebra systems. The Mathematics Teacher, 95, 622–627.

    Google Scholar 

  • Prediger, S. (2005). Diversity as a chance in mathematics classrooms. International Journal for Mathematics Teaching and Learning.

  • Siebel, F. (2005). Elementare Algebra und ihre Fachsprache. Mühltal: Allgemeine Wissenschaft.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1996). Grounded theory—Grundlagen qualitativer Sozialforschung. Weinheim: Beltz, Psychologie Verlags Union.

    Google Scholar 

  • Tall, D. (1997). Functions and calculus. In A. J. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 289–325). Dordrecht: Kluwer.

    Google Scholar 

  • Vollrath, H.-J. (1994). Algebra in der Sekundarstufe. Mannheim: BI Wissenschaftsverlag.

    Google Scholar 

  • Wenger, R. H. (1987). Cognitive science and algebra learning. In A. Schoenfeld (Ed.), Cognitive science and mathematical education. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Zbiek, R., Heid, K., Blume, G., & Dick, Th. (2007). Research on technology in mathematics education—A perspective of constructs. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Charlotte, NC: Information Age.

    Google Scholar 

  • Zorn, P. (2002). Algebra, computer algebra and mathematical thinking. In Contribution to the 2nd international conference on the teaching of mathematics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Zeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, M., Barzel, B. Influences of CAS and GC in early algebra. ZDM Mathematics Education 42, 775–788 (2010). https://doi.org/10.1007/s11858-010-0287-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0287-0

Keywords

Navigation