Skip to main content
Log in

Mathematical interaction shaped by communication, epistemological constraints and enactivism

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

On the surface, mathematical interaction often appears as an immediately transparent event that could be directly understood by careful observation. Theoretical considerations, however, clearly show that mathematical speaking and conversation in teaching–learning situations are highly complex social structures comprising many preconditions. Communication does not generate direct understanding and the object of communication—mathematics—is, as knowledge of abstract relations, not directly accessible. The learning agents—the teacher and students in the mathematics classroom—have to cope with these difficulties in a way of reciprocal actions between social communication and individual consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. To be clear: researchers in mathematics education would completely disagree with such a conception of teaching as a transmission of unambiguous mathematical knowledge (see Ernest 2010). But in everyday mathematics teaching the teaching–learning processes of mathematical knowledge often transform to interactions in which mathematical knowledge is intended to be directly transported from the teacher to the students (see the criticisms made by von Glasersfeld 1995, p. 83).

References

  • Baraldi, C., Corsi, G., & Esposito, E. (1997). GLU. Glossar zu Niklas Luhmanns Theorie sozialer Systeme. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht—Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.

    Google Scholar 

  • Bauersfeld, H. (2000). Radikaler Konstruktivismus, Interaktionismus und Mathematikunterricht. In E. Begemann (Ed.), Lernen verstehen – Verstehen lernen (pp. 117–144). Frankfurt/Main: Peter Lang.

    Google Scholar 

  • Beer, S. (1980). Autopoietic systems (preface). In H. Maturana & R. Varela (Eds.), Autopoiesis and cognition. The realization of the living (pp. 63–72). Dordrecht: Reidel.

  • Brown, L., & Coles, A. (2012). Developing “deliberate analysis” for learning mathematics and for mathematics teacher education: How the enactive approach to cognition frames reflection. Educational Studies in Mathematics, 80(1–2), 217–231.

    Article  Google Scholar 

  • Cassirer, E. (1957). The philosophy of symbolic forms. The phenomenology of knowledge (Vol. 3). New Haven: Yale University Press.

  • Duval, R. (2000). Basic issues for research in mathematics education. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th international conference for the psychology of mathematics education (Vol. I, pp. 55–69). Hiroshima: Nishiki.

  • Ernest, P. (2010). Reflections on theories of learning. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 39–47). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.

    Google Scholar 

  • Fromm, A., & Spiegel, H. (1996). Eigene Wege beim Dividieren – Annika: Eine Fallstudie. In G. Kadunz et al. (Eds.), 20 Jahre Mathematikdidaktik. Trends und Perspektiven (pp.107–114). Wien and Stuttgart: Hölder-Pichler-Tempsky-Teubner.

  • Goodchild, S. (2014). Enactivist theories. In S. Lerman (Ed.), Encyclopedia of mathematics education. Heidelberg: Springer.

    Google Scholar 

  • Hasemann, K. (2003). Anfangsunterricht Mathematik. Heidelberg and Berlin: Spektrum Akademischer.

    Google Scholar 

  • Hefendehl-Hebeker, L. (1989). Die negativen Zahlen zwischen anschaulicher Deutung und gedanklicher Konstruktion. Geistige Hindernisse in ihrer Geschichte. Mathematiklehren, 35, 6–12.

    Google Scholar 

  • Hersh, R. (1998). What is mathematics, really? DMV Mitteilungen, 2, 13–14.

    Google Scholar 

  • Jahnke, H. N., & Otte, M. (1981). On ‘Science as a Language’. In H. N. Jahnke & M. Otte (Eds.), Epistemological and social problems of the sciences in the early nineteenth century (pp. 75–89). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Krummheuer, G. (1984). Zur unterrichtsmethodischen Diskussion von Rahmungsprozessen. Journal für Mathematik Didaktik, 5(4), 285–306.

    Article  Google Scholar 

  • Luhmann, N. (1996). Takt und Zensur im Erziehungssystem. In N. Luhmann & K.-E. Schorr (Eds.), Zwischen System und Umwelt. Fragen an die Pädagogik (pp. 279–294). Frankfurt am Main: Suhrkamp.

  • Luhmann, N. (1997). Was ist Kommunikation? In F. B. Simon (Ed.), Lebende Systeme. Wirklichkeitskonstruktionen in der systemischen Therapie (pp. 19–31). Frankfurt am Main: Suhrkamp.

  • Luhmann, N. (2002a). Einführung in die Systemtheorie. Heidelberg: Carl-Auer-Systeme.

    Google Scholar 

  • Luhmann, N. (2002b). Das Erziehungssystem der Gesellschaft. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Maturana, H. R. (1988a). Reality: The search for objectivity or the quest for a compelling argument. The Irish Journal of Psychology, 9(1), 25–82. http://www.univie.ac.at/constructivism/papers/maturana/88-reality.html. Accessed 21 August 2014.

  • Maturana, H. (1988b). Ontology of observing: The biological foundations of self consciousness and of the physical domain of existence. In R. Donaldson (Ed.), Texts in cybernetic theory: An in-depth exploration of the thought of Humberto Maturana, William T. Powers, and Ernst von Glasersfeld. Conference Workbook. Felton: American Society for Cybernetics. http://ada.evergreen.edu/~arunc/texts/cybernetics/oo/oo3.pdf. Accessed 21 August 2014.

  • Maturana, H. R., & Varela, F. J. (1992). The tree of knowledge: The biological roots of human understanding. Boston: Shambhala.

    Google Scholar 

  • Mgombelo, J., & Reid, D. (2015). Roots and key concepts in enactivist theory and methodology. ZDMThe International Journal on Mathematics Education, 47(2) (this issue).

  • Rotman, B. (1987). Signifying nothing: The semiotics of zero. Stanford: Stanford University Press.

    Google Scholar 

  • Steenpaß, A., & Steinbring, H. (2013). Young students’ subjective interpretations of mathematical diagrams: Elements of the theoretical construct “frame-based interpreting competence”. ZDMThe International Journal on Mathematics Education, 46(1), 3–14. doi:10.1007/s11858-013-0544-0.

  • Steinbring, H. (2005). Do mathematical symbols serve to describe or to construct “reality”? Epistemological problems in the teaching of mathematics in the field of elementary algebra. In M. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign: Grounding mathematics education (Festschrift für Michael Otte) (pp. 91–104). Berlin and New York: Springer.

    Chapter  Google Scholar 

  • Steinbring, H. (2009). The construction of new mathematical knowledge in classroom interaction: An epistemological perspective. Berlin and New York: Springer.

    Google Scholar 

  • Tomasello, M. (2008). The origins of human communication. Cambridge: MIT Press.

    Google Scholar 

  • Varela, F. (1981). Autonomy and autopoiesis. In G. Roth & H. Schwegler (Eds.), Self-organizing systems: An interdisciplinary approach (pp. 14–24). New York: Campus.

    Google Scholar 

  • Varela, F. (1999). Ethical know-how: Action, wisdom, and cognition. Stanford: Stanford University Press.

    Google Scholar 

  • Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht—Theoretische Grundlagen und mikroethnographische Falluntersuchungen. Weinheim: Beltz.

    Google Scholar 

  • Voigt, J. (1994). Entwicklung mathematischer Themen und Normen im Unterricht. In H. Maier & J. Voigt (Eds.), Interpretative Unterrichtsforschung (pp. 77–111). Köln: Aulis.

    Google Scholar 

  • Voigt, J. (1996). Empirische Unterrichtsforschung in der Mathematikdidaktik. In G. Kadunz et al. (Eds.), 20 Jahre Mathematikdidaktik. Trends und Perspektiven (pp. 383–398). Wien and Stuttgart: Hölder-Pichler-Tempsky-Teubner.

  • von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. London: Falmer.

    Book  Google Scholar 

  • Zeleny, M., & Pierre, N. (1976). Simulation of self-renewing systems. In E. Jantsch & C. Waddington (Eds.), Evolution and consciousness. Reading: Addison Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Steinbring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbring, H. Mathematical interaction shaped by communication, epistemological constraints and enactivism. ZDM Mathematics Education 47, 281–293 (2015). https://doi.org/10.1007/s11858-014-0629-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-014-0629-4

Keywords

Navigation