Skip to main content
Log in

The relevance and efficacy of metacognition for instructional design in the domain of mathematics

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The efficacy of metacognition as theory-based instructional principle or technique in general, and particularly in mathematics, is explored. Starting with an overview of different definitions, conceptualizations, assessment and training models originating from cognitive information processing theory, the role of metacognition in teaching and learning is critically discussed. An illustrative training program in kindergarten demonstrates that explicit and embedded metacognitive training can have an effect on mathematics learning even in very young children. Theoretical and methodological issues for future research, and recommendations for mathematics educators, are analyzed within the framework of the Opportunity-Propensity and Universal instructional design framework, demonstrating the relevance of metacognition in the domain of mathematics teaching, impacting children’s learning of mathematics and their active involvement in their learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ardila, A. (2013). Development of metacognitive and emotional executive functions in children. Applied Neuropsychology Child, 2, 82–87. doi:10.1080/21622965.2013.748388.

    Article  Google Scholar 

  • Azevedo, R. (2009). Theoretical, conceptual, methodological, and instructional issues in research on metacognition and self-regulated learning: a discussion. Metacognition and Learning, 4, 87–95. doi:10.1007/s11409-009-9035-7.

    Article  Google Scholar 

  • Azevedo, R., Moos, D., Johnson, A.M., & Chauncey, A.D. (2010). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational Psychologist, 45, 210–223. doi:10.1080/00461520.2010.515934.

    Article  Google Scholar 

  • Brown, A. L. (1987). Metacognition, executive control, self-regulation and other more mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation and understanding (pp. 65–116). Hillsdale: Laurence Erlbaum Associates.

    Google Scholar 

  • Brown, A. L., Bransford, J. D., Ferrara, R. A., & Campione, J. C. (1983). Learning, remembering, and understanding. In J. H. Flavell & E. M. Markham (Eds.), Handbook of child psychology: Vol. 3. Cognitive development (pp. 77–166). New York: Wiley.

    Google Scholar 

  • Bryce, D., & Whitebread, D. (2012). The development of metacognitive skills: evidence from observational analysis of young children’s behaviour during problem-solving. Metacognition and Learning, 7, 197–217. doi:10.1007/s11409-012-9091-2.

    Article  Google Scholar 

  • Budd, C. J. (2015). Promoting mathematics to the general public. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 3–16). London: Oxford University Press.

    Google Scholar 

  • Carr, M., Alexander, J., & Folds-Bennett, T. (1994). Metacognition and mathematics strategy use. Applied Cognitive Psychology, 8, 583–595. doi:10.1002/acp.2350080605.

    Article  Google Scholar 

  • Carr, M., & Jessup, D. L. (1995). Cognitive and metacognitive predictors of mathematics strategy use. Learning and Instruction, 7, 235–247. doi:10.1016/1041-6080(95)90012-.

    Google Scholar 

  • Cavanaugh, J.C., & Perlmutter, M. (1982). Metamemory: a critical examination. Child Development, 53, 11–28. doi:10.2307/1129635.

    Article  Google Scholar 

  • Clarke, D.J., Waywood, A., & Stephens, M. (1993). Probing the structure of mathematical writing. Educational Studies in Mathematics, 25, 235–250. doi:10.1007/BF01273863.

    Article  Google Scholar 

  • Cornoldi, C., Carretti, B., Drusi, S., & Tencati, C. (2015). Improving problem solving in primary school students: the effect of a training programme focusing on metacognition and working memory. British Journal of Educational Psychology, 85, 424–439. doi:10.1111/bjep.I2083.

    Article  Google Scholar 

  • De Backer, L. (2015). Fostering university students’ individual and socially shared metacognitive regulation through reciprocal same-age peer tutoring: a study into the impact and interaction processes. Unpublished doctoral thesis. Ghent University.

  • De Jager, B., Jansen, M., & Reezigt, G. (2005). The development of metacognition in primary school learning environments. School Effectiveness and School Improvement, 16, 179–196. doi:10.1080/09243450500114181.

    Article  Google Scholar 

  • Desender, K., Van Opstal, F., Hughes, G., & Van den Bussche, E. (2016). The temporal dynamics of metacognition: dissociating task-related activity from later metacognitive processes. Neuropsychologia, 82, 54–64. doi:10.1016/j.neuropsychologia.2016.01.003.

    Article  Google Scholar 

  • Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition Learning, 3, 189–206. doi:10.1007/s11409-008-9026-0.

    Article  Google Scholar 

  • Desoete, A., Praet, M., Van de Velde, C., De Craene, B., & Hantson, E. (2016). Enhancing mathematical skills through interventions with virtual manipulatives. In P. S. Moyer-Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manipulatives (pp. 171–187). Switzerland: Springer.

    Google Scholar 

  • Desoete, A., & Roeyers, H. (2002). Off-line metacognition. A domain-specific retardation in young children with learning disabilities? Learning Disability Quarterly, 25, 123–139. doi:10.2307/1511279.

    Article  Google Scholar 

  • Desoete, A., & Roeyers, H. (2006). Metacognitive macroevaluations in mathematical problem solving. Learning and Instruction, 16, 12–25. doi:10.1016/j.learninstruc.2005.12.003.

    Article  Google Scholar 

  • Desoete, A., Roeyers, H., & De Clercq, A. (2003). Can off-line metacognition enhance mathematical problem solving? Journal of Educational Psychology, 95, 188–200. doi:10.1037/0022-0663.95.1.188.

    Article  Google Scholar 

  • DiDonato, N. C. (2013). Effective self- and co-regulation in collaborative learning groups: an analysis of how students regulate problem solving of authentic interdisciplinary tasks. Instructional Science, 41, 25–47. doi:10.1007/s11251-012-9206-9.

    Article  Google Scholar 

  • Donker, A.S., de Boer, H., Kostons, D., Dignath van Ewijk, C.C., & van der Werf, M.P.C. (2014). Effectiveness of learning strategy instruction on academic performance: a metaanalysis. Educational Research review, 11, 1–26. doi:10.1016/j.educrev.2013.11.002.

    Article  Google Scholar 

  • Dragan, M., & Dragan, W. (2014). Temperament and anxiety: The mediating role of metacognition. Journal of Psychopathology Behaviour Assessment, 36, 246–254. doi:10.1007/s10862-013-9392-z.

    Article  Google Scholar 

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446. doi:10.1037/0012-1649.43.6.1428.

    Article  Google Scholar 

  • Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14. doi:10.1016/j.edurev.2005.11.00.

    Article  Google Scholar 

  • Efklides, A. (2008). Metacognition: defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287. doi:10.1027/1016-9040.13.4.277.

    Article  Google Scholar 

  • Erickson, S., & Heit, E. (2015). Metacognition and confidence: Comparing mathematics to other academic subjects. Frontiers in Psychology, 6, 742. doi:10.3389/fpsyg.2015.00742. (Article 742)

    Article  Google Scholar 

  • Flavell, J. H. (1976). Metacognitive aspects of problem-solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–236). Hillsdale: Erlbaum.

    Google Scholar 

  • Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th edn.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Fleming, S. M., Donlan, R. J., & Frith, C. D. (2012). Metacognition: computation, biology and function. Philosophical Transactions of the Royal Society, 367, 1280–1286. doi:10.1098/rstb.2012.0021.

    Article  Google Scholar 

  • Focant, J., Grégoire, J., & Desoete, A. (2006). Goal-setting, planning and control strategies and arithmetical problem solving at grade 5. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 51–72). New York: Nova Science.

    Google Scholar 

  • Furnes, B., & Norman, E. (2015). Metacognition and reading: comparing three forms of metacognition in normally developing readers and readers with dyslexia. Dyslexia (Chichester, England), 21, 273–284. doi:10.1002/dys.1501.

    Article  Google Scholar 

  • Georghiades, P. (2007). Beyond conceptual change learning in science education: focusing on transfer, durability, and metacognition. Educational Research, 42, 119–139.

    Article  Google Scholar 

  • Ginsburg, H. P., Labrecque, R., Carpenter, K., & Pagar, D. (2015). New possibilities for early mathematics education: cognitive guidelines for designing high-quality software to promote young children’s meaningful mathematics learning. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 1055–1098). London: Oxford University Press.

    Google Scholar 

  • Grégoire, J., Noël, M., & Van Nieuwenhoven (2004). TEDI-MATH. Antwerpen: Harcourt.

    Google Scholar 

  • Hanna, E. I. (2005). Inclusive design for maximum accessibility: a practical approach to universal design (PEM Research Report No. 05–04). Upper Saddle River: Pearson Educational Measurement.

    Google Scholar 

  • Hartman, H., & Sternberg, J. (1993). A broad BACIES for improving thinking. Instructional Science, 21, 401–425.

    Article  Google Scholar 

  • Hitchcock, C.G., Meyer, A., Rose, D., & Jackson, R. (2002). Providing new access to the general curriculum: Universal design for learning. Teaching Exceptional Children, 35, 8–17.

    Article  Google Scholar 

  • Hurme, T.L., Palonen, T., & Järvelä, S. (2006). Metacognition in joint discussions: an analysis of the patterns of interaction and the metacognitive content of the networked discussions in mathematics. Metacognition and Learning, 1, 181–200.

    Article  Google Scholar 

  • Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P.K. (2011). Socially shared metacognition in dyads of pupils in collaborative mathematical problem-solving processes. Learning and Instruction, 21, 379–393. doi:10.1016/j.learninstruc.2010.05.002.

    Article  Google Scholar 

  • Järvelä, S., Järvenojä, H., Malmberg, J., & Hadwin, A. (2013). Exploring socially shared regulation in the context of collaboration. Journal of Cognitive Education and Psychology, 12, 267–286. doi:10.1007/s11423-014-9358-1.

    Article  Google Scholar 

  • Koriat, A. (2007). Metacognition and consciousness. In P. D. Zelazo, M. Moscovitch & E. Thompson (Eds.), The Cambridge handbook of consciousness (pp. 289–325). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kramarski, B. (2009). Metacognitive feedback in online mathematical discussion. In R. Subramaniam &, T. W. Leo (Eds.), Handbook of research on new media literacy at the K-12 level: Issues and challenges (pp. 794–805). Hershey:Information science reference

    Chapter  Google Scholar 

  • Kramarski, B., & Hirsch, C. (2003). Effects of computer algebra system (CAS) with metacognitive training on mathematical reasoning. Educational Media International, 40, 249–257.

    Article  Google Scholar 

  • Larkin, S. (2009). Metacognition in young children. London: Routledge.

    Google Scholar 

  • Lucangeli, D., Cornoldi, C., & Tellarinin, M. (1998). Metacognition and learning disabilities in mathematics. In T. E. Scruggs & M. A. Mastropieri (Eds.), Advances in learning and behavioral disabilities (pp. 219–285). Greenwich: JAI.

    Google Scholar 

  • Marulis, L. M., Sullivan Palinscar, A., Berhenke, A. L., & Whitebread, D. (2016). Assessing metacognitive knowledge in 3–5 year olds, the development of a metacognitive interview (McKI). Metacognition Learning, 11, 339–368. doi:10.1107/s11409-016-9157-7.

    Article  Google Scholar 

  • Mevarech, Z. R., & Fridkin, S. (2006). The effects of IMPROVE on mathematical knowledge, mathematical reasoning and metacognition. Metacognition and Learning, 1, 85–97. doi:10.1007/s11409-006-6584-x.

    Article  Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34, 365–395. doi:10.3102/00028312034002365.

    Article  Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students' mathematical reasoning. British Journal of Educational Psychology, 73(4), 449–471. doi:10.1348/000709903322591181

    Article  Google Scholar 

  • Moore, K. D. (2005). Effective instructional strategies. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Morosanova, V.I., Gomina, T.G., Kovas, Y., & Bogdanova, O.Y. (2016). Cognitive and regulatory characteristics and mathematical performances in high school students. Personality and Individual Differences, 90, 177–186. doi:10.1016/j.paid.2015.10.034.

    Article  Google Scholar 

  • Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116. doi:10.1037/0003-066X.51.2.102.

    Article  Google Scholar 

  • Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Olsen, J. R., & Singer, M. (1993). Teacher reflection: researching our own practice. In B. L. Hayes & K. Camperell (Eds.), Reading: strategies, practices, and research for the 21st century, American Reading Forum, 13. (Eric Document Reproduction Service No. ED 364 855).

  • Osman, M., & Hannafin, M. (1992). Metacognition research and theory: analysis and implications for instructional design. Educational Technology Research and Development, 40, 83–99. doi:10.1007/BF02297053.

    Article  Google Scholar 

  • Özsoy, G. (2011). An investigation of the relationship between metacognition and mathematics achievement. Asia Pacific Educational Review, 12, 227–235. doi:10.1007/s12564-010-9129-6.

    Article  Google Scholar 

  • Pennequin, V., Sorel, O., Nanty, I., & Fontaine, R. (2010). Metacognition and low achievement in mathematics: the effect of training in the use of metacognitive skills. Thinking and Reasoning, 16, 198–220. doi:10.1080/13546783.2010.509052.

    Article  Google Scholar 

  • Perfect, T., & Schwartz, B. (2002). Applied Metacognition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pintrich, P.R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16, 385–407. doi:10.1007/s10648-004-0006-x.

    Article  Google Scholar 

  • Pleschovà, G., & McAlpine, L. (2016). Helping teachers to focus on learning and reflect on their teaching. What role does teaching context play? Studies in Educational Evaluation, 48, 1–6.

    Article  Google Scholar 

  • Robson, S. (2016). Self-regulation and metacognition in young children: does it matter if adults are present? British Educational Research Journal, 42, 185–206. doi:10.1002/berj.3205.

    Article  Google Scholar 

  • Roebers, C.M., & Feurer, E. (2016). Linking executive functions and procedural metacognition. Child Developmental Perspectives, 10, 39–44. doi:10.1111/cdep.12159.

    Article  Google Scholar 

  • Rogat, T.K., & Adams-Wiggins, K.R. (2014). Other-regulation in collaborative groups: implications for regulation quality. Instructional Science, 42, 879–904. doi:10.1007/s11251-014-9322-9.

    Article  Google Scholar 

  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42, 149–161. doi:10.1007/s11858-010-0240-2.

    Article  Google Scholar 

  • Schneider, W., & Lockl, K. (2002). The development of metacognitive knowledge in children and adolescents. In T. Perfect & B. Schwartz (Eds.), Applied metacognition (pp. 224–247). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 165–197). New York: MacMillan.

    Google Scholar 

  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26, 113–125. doi:10.1023/A:1003044231033.

    Article  Google Scholar 

  • Schraw, G. (2001). Promoting general metacognitive awareness. In H. Hartman (Ed.), Metacognition in learning and instruction (pp. 3–16). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139. doi:10.1007/s11165-005-3917-8.

    Article  Google Scholar 

  • Schunk, D. H. (2004). Learning Theories–an educational perspective. Upper Saddle River: Pearson-Merrill Prentice Hall.

    Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low income children’s numerical development. Developmental Science, 11, 655–661. doi:10.1111/j.1467-7687.2008.00714.x.

    Article  Google Scholar 

  • Spiess, M.A., Meier, B., & Roebers, C.M. (2016). Development and longitudinal relationships between children’s executive functions, prospective memory, and metacognition. Cognitive Development, 38, 99–113. doi:10.1016/j.cogdev.2016.02.003.

    Article  Google Scholar 

  • Tanner, H.F.R., & Jones, S. A. (1995). Using peer and self assessment to develop modelling skills with students aged 11 to 16: a socio-constructive view. Educational Studies in Mathematics, 27, 413–431. doi:10.1007/BF01273381.

    Article  Google Scholar 

  • Tarricone, P. (2011). The taxonomy of metacognition. Hove: Psychology Press.

    Google Scholar 

  • Van der Stel, M., & Veenman, M. (2014). Metacognitive skills and intellectual ability of young adolescents: A longitudinal study from a developmental perspective. European Journal of Psychological Studies, 29, 117–137. doi:10.1007/s10212-013-0190-5.

    Google Scholar 

  • van Gog, T., & Jarodzka, H. (2013). Eye-tracking as a tool to study and enhance cognitive and metacognitive processes in computer-based learning environments. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 143–156). New York: Springer.

    Google Scholar 

  • Van Luit, J.E.H., & Schopman, A.M. (2000). Improving early numeracy of young children with special educational needs. Remedial and Special Education, 21, 27–40. doi:10.1177/074193250002100105.

    Article  Google Scholar 

  • Veenman, M. V. J. (2011). Alternative assessment of strategy use with self-report instruments: a discussion. Metacognition and Learning, 6, 205–211. doi:10.1007/s11409-011-9080-x.

    Article  Google Scholar 

  • Veenman, M.V.J. (2013). Metacognition and learning: conceptual and methodological considerations revisited. What have we learned during the last decade? Keynote lecture EARLI. 27.08.2013 München.

  • Veenman, M. V. J. (2006). The role of intellectual and metacognitive skills in mathematics problem solving. In A. Desoete & M. Veenman (Eds.), Metacogniton in mathematics education. (pp. 35–50). Haupauge: Nova Science.

    Google Scholar 

  • Vermeer, H.J., Boekaerts, M., & Seegers, G. (2000). Motivational and gender differences: sixth-grade students’ mathematical problem-solving behavior. Journal of Educational Psychology, 92, 308–315. doi:10.1037/0022-0663.92.2.308.

    Article  Google Scholar 

  • Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: analysis and improvement. In J. H. M. Hamers, J. E. H. Van Luit & B. Csapo (Eds.), Teaching and learning thinking skills. Contexts of learning (pp. 215–240). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Vo, B.A., Li, R., Kornell, N., Pouget, A., & Cantlon, J.F. (2014). Young children bet on their numerical skills: Metacognition in the numerical domain. Psychological Science, 25, 1712–1721. doi:10.1177/0956797614538458.

    Article  Google Scholar 

  • Volet, S., Vauras, M., Khosa, D., & Iiskala, T. (2013). Metacognitive regulation in collaborative learning: conceptual developments and methodological contextualizations. In S. Volet & M. Vauras (Eds.), Interpersonal regulation of learning and motivation: methodological advances (pp. 67–101). London: Routledge.

    Google Scholar 

  • Wall, J.L., Thompson, C.A., Dunlosky, J., & Merriman, W.E. (2016). Children can accurately monitor and control their number-line estimation performance. Developmental Psychology, 2(1493–1502), 1493. doi:10.1037/dev0000180.

    Article  Google Scholar 

  • Wang, A. H., Shen, F., & Byrnes, J. P. (2013). Does the opportunity-propensity framework predict the early mathematics skills of low-income pre-kindergarten children? Contemporary Educational Psychology, 38, 259–270. doi:10.1016/j.cedpsych.2013.04.004.

    Article  Google Scholar 

  • Wechsler, D., Kort, W., Schittekatte, M., Bosmans, M., Compaan, E. L., Dekker, P. H., & Verhaeghe, P. (2002). Wechsler intelligence scale for children-III-Nl. Amsterdam: Harcourt.

    Google Scholar 

  • Whitebread, D., Bingham, S., Grau, V., Pasternak, D. P., & Sangster, C. (2007) Development of metacognition and self-regulated learning in young children: role of collaborative and peerassisted learning. Journal of Cognitive Education and Psychology, 6, 433–455. https://www.educ.cam.ac.uk/research/projects/cindle/Whitebreadetal.pdf (retrieved on 18th march 2017)

  • Winne, P. H. (2011). A cognitive and metacognitive analysis of self-regulated learning. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 15–32). New York: Routledge.

    Google Scholar 

  • Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41, 64–70.

    Article  Google Scholar 

  • Zimmerman, B. J., & Kitsantas, A. (2005). Homework practices and academic achievement: The mediating role of self-efficacy and perceived responsibility beliefs. Contemporary Educational Psychology, 30(4), 397–417. doi:10.1016/j.cedpsych.2005.05.003.

    Article  Google Scholar 

  • Zimmerman, B. J., & Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. In D. J. Hacker, J. Dunlosky & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 299–315). New York: Routledge.

    Google Scholar 

  • Zimmerman, B. J., & Schunk, D. H. (2011). Self-regulated learning and performance: an introduction and an overview. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 1–12). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Desoete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baten, E., Praet, M. & Desoete, A. The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM Mathematics Education 49, 613–623 (2017). https://doi.org/10.1007/s11858-017-0851-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0851-y

Keywords

Navigation