Skip to main content
Log in

Macroscopic to microscopic scales of particle dosimetry: from source to fate in the body

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is cleared from the body. However, this paper shows a much more complicated picture starting with emissions sources, showing how the source-to-intake fraction (iF) can be used to estimate changes in the inhaled dose due to changes in emissions and then ending with particle–liquid, particle–cellular and subcellular interactions, and movement of ultrafine particles across the lung–blood barrier. These latter issues begin to suggest mechanisms that can lead to adverse health effects; the former can provide guidance to policy decisions designed to reduce the health impact of atmospheric particles. The importance of ultrafine particles, their ability to translocate to other parts of the body, and the potential impact of these particles has advanced significantly over the last decade, including studies that show the movement of ultrafine particles along the olfactory nerves in the nose with direct transport to the brain, the neurological effects of which are still unknown. Incremental advancements continue with regards to understanding particle deposition, including regional and local deposition (including hot spots) and clearance and the factors that affect these variables, in part due to the development and implementation of computational fluid dynamics (CFD) models and digital imaging of the lungs. CFD modeling will continue to provide new information for reducing uncertainty in dosimetric calculations. We understand better today how a number of diseases may develop based on the fate of particles after deposition in the respiratory track and how changes in source emissions might impact that dose. However, a number of uncertainties remain, some of which can be reduced by addressing the research needs stated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. American Association for Aerosol Research held in San Diego, CA March 22–26, 2010, http://aaar.2010specialty.org/ (Solomon et al. 2011).

  2. Air Pollution and Health, 2010 (Solomon et al. 2011) SQ4: “What advances have been made in understanding the relationships between exposure, both spatially and temporally, and estimates of dose that tie to health outcomes?”

References

  • Ayala A, Brauer M, Mauderly JL, Samet JM (2011) Air pollutants and sources associated with health effects. Air Qual Atmos Health. doi:10.1007/s11869-011-0155-2

  • Alexander DJ, Collins CJ, Coombs DW, Gilkison IS, Hardy CJ, Healey G, Karantabias G, Johnson N, Karlsson A, Kilgour JD, McDonald P (2008) Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in nonclinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol 20:1179–1189

    CAS  Google Scholar 

  • Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    CAS  Google Scholar 

  • Asgharian B, Hoffmann W, Bergmann R (2001) Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol 34:332–339

    CAS  Google Scholar 

  • Balásházy I, Hofmann W, Heistracher T (1999) Computation of local enhancement factors for the quantification of particles deposition patterns in airway bifurcations. J Aerosol Sci 30:185–203

    Google Scholar 

  • Balásházy I, Hofmann W, Heistracher T (2003) Local particle deposition patterns may play a key role in the development of lung cancer. J Appl Physiol 94:1719–1725

    Google Scholar 

  • Bennett WD, Zeman KL (1998) Deposition of fine particles in children spontaneously breathing at rest. Inhal Toxicol 10:831–842

    CAS  Google Scholar 

  • Bennett WD, Zeman KL (2004) Effect of body size on breathing pattern and fine-particle deposition in children. J Appl Physiol 97:821–826

    Google Scholar 

  • Bennett WD, Zeman KL, Kim C, Mascarella J (1997) Enhanced deposition of fine particles in COPD patients spontaneously breathing at rest. Inhal Toxicol 9:1–14

    CAS  Google Scholar 

  • Bennett DH, Mckone T, Evans J, Nazaroff W, Margni M, Jolliet O, Smith K (2002a) Defining intake fraction. Environ Sci Technol 36(9):207A–211A

    CAS  Google Scholar 

  • Bennett DH, Margni M, McKone TE, Jolliet O (2002b) Intake fraction for multimedia pollutants: a tool for life cycle analysis and comparative risk assessment. Risk Anal 22(5):905–918

    Google Scholar 

  • Brandenberger C, Mühlfeld C, Zulqurnain A, Lenz AG, Schmit O, Parak WJ, Gehr P, Rothen-Rutishauser B (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6:1669–1678

    CAS  Google Scholar 

  • Brodie M, Elvidge AR (1934) The portal of entry and transmissions of the virus of poliomyelitis. Science 79(2045):235–236

    CAS  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD, In behalf of the American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010) Particulate matter air pollution and cardiovascular disease: an update TCBRSO the scientific statement from the American Heart Association. Circulation 121:2331–2378

    CAS  Google Scholar 

  • Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247

    Google Scholar 

  • Brown JS, Wilson WE, Grant LD (2005) Dosimetric comparisons of particle deposition and retention in rats and humans. Inhal Toxicol 17:355–385

    CAS  Google Scholar 

  • Chang L-Y, Crapo JD, Gehr P, Rothen-Rutishauser B, Mühlfeld C, Blank F (2010) Alveolar epithelium in lung toxicology. In: Yost GS (ed) Comprehensive toxicology, vol 8, respiratory toxicology. Elsevier, Amsterdam, pp 59–91

    Google Scholar 

  • Chen LC, Lippmann M (2009) Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21:1–31

    Google Scholar 

  • De Haar C, Hassing I, Bol M, Bleumink R, Pieters R (2006) Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 36:1469–1479

    Google Scholar 

  • Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RPF, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W (2003) Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34:1369–1382

    CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    CAS  Google Scholar 

  • Doty RL (2008) The olfactory vector hypothesis of neurodegenerative disease: is it viable? Annals Neurol 63:7–15

    Google Scholar 

  • Doty RL (2009) Do environmental agents enter the brain via the olfactory mucosa to induce neurodegenerative diseases? NY Acad Sci 1170:610–614

    Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    CAS  Google Scholar 

  • EPA (1996) Air quality criteria for particulate matter. U.S. Environmental Protection Agency, National Center for Environmental Assessment. Research Triangle Park, NC, EPA/600/P-95/001aF-cF. http://www.epa.gov/nheerl/research/pm/references.html (accessed 8-23-11)

  • EPA (2004) Air quality criteria for particulate matter (Final Report, Oct 2004). U.S. Environmental Protection Agency, Washington, DC, EPA/600/P-99/002aF-bF. http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87903 (Accessed 8-23-11)

  • EPA (2009) Integrated science assessment for particulate matter (Final Report). U.S. Environmental Protection Agency, National Center for Environmental Assessment. Washington, DC, EPA/600/R-08/139F. http://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=216546 (Accessed 8-23-11)

  • Farkas A, Balásházy I (2008) Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Comput Biol Med 38:508–518

    Google Scholar 

  • Ferin J, Oberdörster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542

    CAS  Google Scholar 

  • Finlay WH, Martin AR (2008) Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv 21:189–206

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere, theory, experiments, and applications. Academic, San Diego, p 969

    Google Scholar 

  • Foos B, Marty M, Schwartz J, Bennett W, Moya J, Jarabek AM, Salmon AG (2008) Focusing on children’s inhalation dosimetry and health effects for risk assessment: an introduction. J Toxicol Environ Health A 71:149–165

    CAS  Google Scholar 

  • Gallo MA (2008) History and scope of toxicology. In: Klassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons, 7th edn. McGraw Hill, New York, pp 3–10

    Google Scholar 

  • Gehr P, Bachofen H, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    CAS  Google Scholar 

  • Gehr P, Schürch S, Berthiaume Y, Im Hof V, Geiser M (1990) Particle retention in airways by surfactant. J Aerosol Med 3:27–43

    Google Scholar 

  • Gehr P, Green FH, Geiser M, Im Hof V, Lee MM, Schurch S (1996) Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med 9:163–181

    CAS  Google Scholar 

  • Gehr P, Muhfeld C, Rothen-Ruthishhauser B, Blank F, eds. (2010) Particle–lung interactions, 2nd edn., Informa Healthcare, New York, NY, 319 pp.

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2. doi:10.1186/1743-8977-7-2

    Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Google Scholar 

  • Gerde P (2008) How do we compare dose to cells in vitro with dose to live animals and humans? Some experiences with inhaled substances. Exp Toxicol Pathol 60:181–184

    CAS  Google Scholar 

  • Gil J, Weibel ER (1971) Extracellular lining of bronchioles after perfusion-fixation of rat lungs for electron microscopy. Anat Rec 169:185–199

    CAS  Google Scholar 

  • Ginsberg GL, Foos BP, Firestone MP (2005) Review and analysis of inhalation dosimetry methods for application to children’s risk assessment. J Toxicol Environ Health A 68:573–615

    CAS  Google Scholar 

  • Greco SL, Wilson AM, Hanna SR, Levy JI (2007a) Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area. Environ Sci Technol 41:7675–7682

    CAS  Google Scholar 

  • Greco SL, Wilson AM, Spengler JD, Levy JI (2007b) Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos Environ 41:1011–1025

    CAS  Google Scholar 

  • Hao J, Wang L, Shen M, Li L, Hu J (2007) Air quality impacts of power plant emissions in Beijing. Environ Pollut 147:401–408

    CAS  Google Scholar 

  • He F, Shaffer ML, Li X, Rodriguez-Colon S, Wolbrette DL, Williams R, Cascio WE, Liao D (2011) Individual-level PM2.5 exposure and the time course of impaired heart rate variability: the APACR study. J Expo Sci Environ Epidemiol 21:65–73

    CAS  Google Scholar 

  • Heath GA, Granvold PW, Hoats AS, Nazaroff WW (2006) Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmos Environ 40:7164–7177

    CAS  Google Scholar 

  • Holt PG, Stumbles PA (2000) Characterization of dendritic cell populations in the respiratory tract. J Aerosol Med 13:361–367

    CAS  Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45:4808–4816

    CAS  Google Scholar 

  • ICRP (International Commission on Radiological Protection) (1994) Human respiratory tract model for radiological protection. ICRP Publication No. 66. Tarrytown, NY: Elsevier Science Ltd..

  • ICRP (1995) Human respiratory tract model for radiological protection: a report of a task group of the international commission on radiological protection. Ann ICRP 24:482

    Google Scholar 

  • Isaacs KK, Martonen TB (2005) Particle deposition in children’s lungs: theory and experiment. J Aerosol Med 18:337–353

    Google Scholar 

  • Kendall M (2007) Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage. Am J Physiol Lung Cell Mol Physiol 293:L1053–L1058

    CAS  Google Scholar 

  • Kilburn KH (1968) A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 98:449–463

    CAS  Google Scholar 

  • Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Ann Rev Fluid Mech 42:301–334

    Google Scholar 

  • Klepeis NE, Nazaroff WW (2006) Modeling residential exposure to secondhand tobacco smoke. Atmos Environ 40(23):4393–4407

    CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530

    CAS  Google Scholar 

  • Kreyling WG, Sammler-Behnke M, Möller W (2006a) Health implication of nanoparticles. J Nanoparticle Rsh 8:543–562

    CAS  Google Scholar 

  • Kreyling WG, Sammler-Behnke M, Möller W (2006b) Ultrafine particle–lung interactions: does size matter? J Aerosol Med 19:74–83

    CAS  Google Scholar 

  • Künzli N, Jerrett M, Mach WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206

    Google Scholar 

  • Lay JC, Stang MR, Fisher PE, Yankaskas JR, Bennett WD (2003) Airway retention of materials of different solubility following local intrabronchial deposition in dogs. J Aerosol Med 16:153–166

    CAS  Google Scholar 

  • Levy JI, Baxter LK, Schwartz J (2009) Uncertainty and variability in health-related damages from coal-fired power plants in the United States. Risk Ana 29:1000–1014

    Google Scholar 

  • Li J, Hao JM (2003) Application of intake fraction to population exposure estimates in Hunan Province of China. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(6):1041–1054

    Google Scholar 

  • Luo Z, Li Y, Nazaroff WW (2010) Intake fraction of nonreactive motor vehicle exhaust in Hong Kong. Atmos Environ 44:1913–1918

    CAS  Google Scholar 

  • MacNee W (2001) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429:195–207

    CAS  Google Scholar 

  • Marshall JD, Behrentz E (2005) Vehicle self-pollution intake fraction: children’s exposure to school bus emissions. Environ Sci Technol 39:2559–2563

    CAS  Google Scholar 

  • Méndez LB, Gookin G, Phalen RF (2010) Inhaled aerosol particle dosimetry in mice: a review. Inhal Toxicol 22(S2):15–20

    Google Scholar 

  • Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, de la Fuente JM, Cassee FR, Boon NA, Macnee W, Millar AM, DE DonaldsonK N (2006) Do inhaled carbon UF particles translocate directly into the circulation in humans? Am J Respir Crit Care Med 173:426–431

    Google Scholar 

  • Mühlfeld C, Geiser M, Kapp N, Gehr P, Rothen-Rutishauser B (2007) Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the “relative deposition index”: evidence for clearance through microvasculature. Part Fibre Toxicol 4:7. doi:10.1186/1743-8977-4-7

    Google Scholar 

  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    CAS  Google Scholar 

  • NRC Research Priorities for Airborne Particulate Matter (1998) I. Immediate priorities and a long-range research portfolio. National Research Council, National Academies Press, Washington, p 195

    Google Scholar 

  • O’Neill MS, Breton CV, Devlin RB, Utell MJ (2011) Air pollution and health: emerging information on susceptible populations. Air Qual Atmos Health. doi:10.1007/s11869-011-0150-7

  • Oberdörster G (1988) Lung clearance of inhaled insoluble and soluble particles. J Aerosol Med 1:289–330

    Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Google Scholar 

  • Oldham MJ (2006) Challenges in validating CFD-derived inhaled aerosol deposition predictions. Inhal Toxicol 18:781–786

    CAS  Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    CAS  Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103:2810–2815

    CAS  Google Scholar 

  • Peters-Golden M (2004) The alveolar macrophage: the forgotten cell in asthma. Am J Respir Cell Mol Biol 31:3–7

    CAS  Google Scholar 

  • Phalen RF, Méndez LB (2009) Dosimetry considerations for animal inhalation studies. Biomarkers 14(S1):63–66

    CAS  Google Scholar 

  • Phalen RF, Oldham MJ, Nel AE (2006) Tracheobronchial particle dose considerations for in-vitro toxicology studies. Toxocol Sci 92:126–132

    CAS  Google Scholar 

  • Phalen RF, Méndez LB, Oldham MJ (2010) New developments in aerosol dosimetry. Inhal Toxicol 22(S2):6–14

    CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    CAS  Google Scholar 

  • Pope CA III, Dockery DW, Schwartz J (1995) Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 7:1–18

    CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    CAS  Google Scholar 

  • Puett RC, Hart JE, Yanosky JD, Paciorek C, Schwartz J, Suh H, Speizer FE, Laden F (2009) Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study. Environ Health Perspect 117:1697–1701

    Google Scholar 

  • Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447

    CAS  Google Scholar 

  • Ries FJ, Marshall JD, Brauer M (2009) IF of urban wood smoke. Environ Sci Technol 43:4701–4706

    CAS  Google Scholar 

  • Rostami AA (2009) Computational modeling of aerosol deposition in (the) respiratory tract: a review. Inhal Toxicol 21:262–290

    CAS  Google Scholar 

  • Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P (2007a) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9. doi:10.1186/1743-8977-4-9

    Google Scholar 

  • Rothen-Rutishauser B, Schürch S, Gehr P (2007b) Interaction of particles with membranes. In: Donaldson K, Borm P (eds) Particle toxicology. Taylor & Francis Group, LLC, CRC Press, Boca Raton, pp 139–160

    Google Scholar 

  • Scheuch G, Kohlhäufl M, Möller W, Brand P, Meyer T, Häussinger K, Sommerer K, Heyder J (2008) Particle clearance from the airways of subjects with bronchial hyperresponsiveness and with chronic obstructive pulmonary disease. Exp Lung Res 34:531–549

    CAS  Google Scholar 

  • Schultz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A (2005) Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 18:1–22

    Google Scholar 

  • Schürch S, Gehr P, Im Hof V, Geiser M, Green F (1990) Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 80:17–32

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics from air pollution to climate change. Wiley, New York, p 1326

    Google Scholar 

  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16:453–459

    CAS  Google Scholar 

  • Sheppard L, Burnett RT, Szpiro AA, Kim S-Y, Jerrett M, Pope CA III, Brunekreef B (2011) Confounding and exposure measurement error in air pollution epidemiology. Air Qual Atmos Health. doi:10.1007/s11869-011-0140-9

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    CAS  Google Scholar 

  • Smaldone GC, Foster WM, O’Riordan TG, Messina MS, Perry RJ, Langenback EG (1993) Regional impairment of mucociliary clearance in chronic obstructive pulmonary disease. Chest 103:1390–1396

    CAS  Google Scholar 

  • Smith JRH, Bailey MR, Etherington G, Shutt AC, Youngmann MJ (2008) Effect of particle size on slow particle clearance from the bronchial tree. Exp Lung Res 34:287–312

    CAS  Google Scholar 

  • Snipes MB, McClellan RO, Mauderly JL, Wolff RK (1989) Retention patterns for inhaled particles in the lung: comparisons between laboratory animals and humans for chronic exposures. Health Phys 57(S1):69–78

    Google Scholar 

  • Solomon PA, Costantini M, Grahame TJ, Gerlofs-Nijland ME, Cassee F, Russell AG, Brook JR, Hopke PK, Hidy G, Phalen RF, Saldiva P, Ebelt Sarnat S, Balmes JR, Tager IB, Özkaynak H, Vedal S, Wierman SSG, Costa DL (2011) Air pollution and health: bridging the gap from sources to health outcomes: conference summary. Air Qual Atmos Health doi:10.1007/s11869-011-0161-4.

  • Stevens G, de Foy B, West JJ, Levy JI (2007) Developing intake fraction estimates with limited data: comparison of methods in Mexico City. Atmos Environ 41:3672–3683

    CAS  Google Scholar 

  • Tainio M, Sofiev M, Hujo M, Tuomisto JT, Loh M, Jantunen MJ, Karppinen A, Kangas L, Karvosenoja N, Kupiainen K, Porvari P, Kukkonen J (2009) Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions. Atmos Environ 43:3052–3059

    CAS  Google Scholar 

  • van Erp AM, Kelly FJ, Demerjian KD, Pope CA III, Cohen AJ (2011) Progress in research to assess the effectiveness of air quality interventions towards improving public health. Air Qual Atmos Health doi:10.1007/s11869-010-0127-y

  • Vermaelen K, Pauwels R (2005) Pulmonary dendritic cells. Am J Respir Crit Care Med 172:530–551

    Google Scholar 

  • Wallenborn JG, McKee JK, Schladweiler MC, Ledbetter AD, Kodavanti UP (2007) Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicol Sci 98:231–239

    CAS  Google Scholar 

  • Wang SX, Hao J, Ho MS, Li J, Lu Y (2006) Intake fractions of industrial air pollutants in China: estimation and application. Sci Total Environ 354:127–141

    CAS  Google Scholar 

  • Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J (2000) Daily mortality and fine and ultrafine particles in Erfurt, Germany, part I: role of particle number and particle mass. Res Rep Health Eff Inst 98:5–94

    Google Scholar 

  • Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S, Möller W, Kreyling WG, Svartengren M (2006) No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 18:741–747

    CAS  Google Scholar 

  • Zhou Y, Levy JI (2008) The impact of urban street canyons on population exposure to traffic-related primary pollutants. Atmos Environ 42:3087–3098

    CAS  Google Scholar 

Download references

Acknowledgments

The preparation of this informative summary, in response to the forth policy-relevant Science Question that was addressed in part at the 2010 International Air Pollution and Health conference, was supported in part by the Charles S. Stocking Family Trust (Dr. Phalen) and the CA Air Resources Board ARB-08-306 (Dr. Méndez). The group from Switzerland received generous financial support from the Swiss National Science Foundation, the Deutsche Forschungsgemeinschaft, the Animal Free Research Foundation, the Gottfried and Julia Bangerter-Rhyner-Foundation, the Doerenkamp-Zbinden Foundation, the Foundation Johanna-Dürmüller-Bol, the Lungenliga Schweiz, and the Swiss Federal Office for the Environment is greatly appreciated. The authors declare that they have no conflict of interest and do not have a financial relationship with the sponsors of the conference. The US Environmental Protection Agency through its Office of Research and Development partially funded and managed the development of this journal article. It has been subjected to the Agency’s administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Solomon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, P.A., Gehr, P., Bennett, D.H. et al. Macroscopic to microscopic scales of particle dosimetry: from source to fate in the body. Air Qual Atmos Health 5, 169–187 (2012). https://doi.org/10.1007/s11869-011-0167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-011-0167-y

Keywords

Navigation