Skip to main content

Advertisement

Log in

Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2 × 2 × 2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ba:

Barium

Ca:

Calcium

CMD:

Count median diameter

CO:

Carbon monoxide

CO2 :

Carbon dioxide

Cr:

Chromium

Cu:

Copper

DE:

Diesel exhaust

DEP:

Diesel exhaust particulate

DTNB:

5,5’-Dithiobis-(2-nitrobenzoic acid)

DTT:

Dithiothreitol

EC:

Elemental carbon

Fe:

Iron

GE:

Gasoline exhaust

HPEM:

Harvard personal environmental monitor

Mg:

Magnesium

MMAD:

Mass median aerodynamic diameter

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Ni:

Nickel

1-NP:

1-Nitropryene

NO:

Nitric oxide

NOx :

Oxides of nitrogen

NO2 :

Nitrogen dioxide

OC:

Organic carbon

PAH:

Polycyclic aromatic hydrocarbon

Pb:

Lead

PBS:

Phosphate-buffered saline

PM2.5 :

Fine particulate matter

PTFE:

Polytetrafluoroethylene

SD:

Standard deviation

Sn:

Tin

TNB:

3-Thio-6-nitrobenzoate

TRAP:

Traffic-related air pollution

UV:

Ultraviolet

UW:

University of Washington

References

  • Ayres JG et al (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal Toxicol 20:75–99

    Article  CAS  Google Scholar 

  • Bai Y, Suzuki AK, Sagai M (2001) The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species. Free Radic Biol Med 30:555–562

    Article  CAS  Google Scholar 

  • Benbrahim-Tallaa L et al (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664. doi:10.1016/S1470-2045(12)70280-2

    Article  Google Scholar 

  • Birger N, Gould T, Stewart J, Miller MR, Larson T, Carlsten C (2011) The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: characterization and comparison to existing facilities. Inhal Toxicol 23:219–225. doi:10.3109/08958378.2011.562256

    Article  CAS  Google Scholar 

  • Biswas S, Verma V, Schauer JJ, Cassee FR, Cho AK, Sioutas C (2009) Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environ Sci Technol 43:3905–3912. doi:10.1021/es9000592

    Article  CAS  Google Scholar 

  • Brook RD et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  • Charrier JG, Anastasio C (2012) On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos Chem Phys Discuss 12:11317–11350. doi:10.5194/acpd-12-11317-2012

    Article  Google Scholar 

  • Cheung KL et al (2009) Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environ Sci Technol 43:6334–6340

    Article  CAS  Google Scholar 

  • Choi JH et al (2011) 5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion. Exp Mol Med 43:471–478. doi:10.3858/emm.2011.43.8.053

    Article  CAS  Google Scholar 

  • Cory G (2011) Scratch-wound assay methods in molecular biology (Clifton, NJ) 769:25–30 doi:10.1007/978-1-61779-207-6_2

  • Danielsen PH, Loft S, Moller P (2008) DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles Particle and fibre toxicology 5:6-8977-8975-8976 doi:10.1186/1743-8977-5-6

  • Doyle M, Sexton KG, Jeffries H, Jaspers I (2007) Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: the role of ozone and other photochemical degradation products. Chem Biol Interact 166:163–169

    Article  CAS  Google Scholar 

  • Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin YH, Jaspers I, Jeffries HE (2012a) Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM. Atmospheric Chem Phys Discuss: ACPD 12:5065–5105

    Article  Google Scholar 

  • Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin YH, Jaspers I, Jeffries HE (2012b) Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM. Atmos Chem Phys 12:12293–12312

    Article  CAS  Google Scholar 

  • Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  Google Scholar 

  • Fujitani Y, Hirano S, Kobayashi S, Tanabe K, Suzuki A, Furuyama A, Kobayashi T (2009) Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhal Toxicol 21:200–209. doi:10.1080/08958370802339491

    Article  CAS  Google Scholar 

  • Ghio AJ, Sobus JR, Pleil JD, Madden MC (2012) Controlled human exposures to diesel exhaust. Swiss Med Wkly 142:w13597. doi:10.4414/smw.2012.13597

    Google Scholar 

  • Gould T, Larson T, Stewart J, Kaufman JD, Slater D, McEwen N (2008) A controlled inhalation diesel exhaust exposure facility with dynamic feedback control of PM concentration. Inhal Toxicol 20:49–52

    Article  CAS  Google Scholar 

  • Health Effects Institute (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects vol 17. Boston, MA

  • Hesterberg TW, Long CM, Bunn WB, Sax SN, Lapin CA, Valberg PA (2009) Non-cancer health effects of diesel exhaust: a critical assessment of recent human and animal toxicological literature. Crit Rev Toxicol 39:195–227. doi:10.1080/10408440802220603

    Article  CAS  Google Scholar 

  • Hirano S, Furuyama A, Koike E, Kobayashi T (2003) Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology 187:161–170. doi:10.1016/S0300-483X(03)00053-2

    Article  CAS  Google Scholar 

  • Hsu C-L, Wu Y-L, Tang G-J, Lee T-S, Kou YR (2009) Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: role of heme oxygenase-1. Pulm Pharmacol Ther 22:286–296. doi:10.1016/j.pupt.2009.02.003

    Article  CAS  Google Scholar 

  • Kang K et al (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 205:227–234. doi:10.1016/j.toxlet.2011.05.1033

    Article  CAS  Google Scholar 

  • Katz D, Ito E, Lau KS, Mocanu JD, Bastianutto C, Schimmer AD, Liu FF (2008) Increased efficiency for performing colony formation assays in 96-well plates: novel applications to combination therapies and high-throughput screening. Bio Technol 44:ix–xiv. doi:10.2144/000112757; 10.2144/000112757

    Google Scholar 

  • Kittelson DB et al (2008) Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas continuously regenerating trap. Environ Sci Technol 42:9276–9282

    Article  CAS  Google Scholar 

  • Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15:483–489

    Article  CAS  Google Scholar 

  • LaGier AJ, Manzo ND, Dye JA (2013) Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms. J Toxic Environ Health A 76:71–85. doi:10.1080/15287394.2013.738169

    Article  CAS  Google Scholar 

  • Laumbach R et al (2009) Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust. J Environ Monit: JEM 11:153–159

    Article  CAS  Google Scholar 

  • Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003a) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol (Orlando, Fla) 109:250–265

    Article  CAS  Google Scholar 

  • Li N et al (2003b) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  Google Scholar 

  • Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. NatProtocols 2:329–333

    CAS  Google Scholar 

  • Lichtveld KM, Ebersviller SM, Sexton KG, Vizuete W, Jaspers I, Jeffries HE (2012) In vitro exposures in diesel exhaust atmospheres: resuspension of PM from filters versus direct deposition of PM from air. Environ Sci Technol 46:9062–9070. doi:10.1021/es301431s; 10.1021/es301431s

    Article  CAS  Google Scholar 

  • Liu P-L, Chen Y-L, Chen Y-H, Lin S-J, Kou YR (2005) Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG. Am J Physiol Lung Cell Mol Physiol 289:L739–L749. doi:10.1152/ajplung.00099.2005

    Article  CAS  Google Scholar 

  • Liu Y-Y, Lin T-C, Wang Y-J, Ho W-L (2009) Carbonyl compounds and toxicity assessments of emissions from a diesel engine running on biodiesels. J Air Waste Manage Assoc 59:163–171. doi:10.3155/1047-3289.59.2.163

    Article  CAS  Google Scholar 

  • Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manage Assoc 51:809–847

    Article  CAS  Google Scholar 

  • Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2013) The role of oxidative stress during inflammatory processes. Biol Chem. doi:10.1515/hsz-2013-0241

    Google Scholar 

  • Martin A, Clynes M (1993) Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology 11:49–58

    Article  CAS  Google Scholar 

  • Mattingly KA, Klinge CM (2012) Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch Toxicol 86:633–642. doi:10.1007/s00204-011-0778-y

    Article  CAS  Google Scholar 

  • McConnachie LA et al (2013) Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology 7:181–191. doi:10.3109/17435390.2011.648224

    Article  CAS  Google Scholar 

  • McDonald JD, Barr EB, White RK (2004a) Design, characterization, and evaluation of a small-scale diesel exhaust exposure system. Aerosol Sci Technol 38:62–78. doi:10.1080/02786820490247623

    Article  CAS  Google Scholar 

  • McDonald JD, Harrod KS, Seagrave J, Seilkop SK, Mauderly JL (2004b) Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environ Health Perspect 112:1307–1312

    Article  CAS  Google Scholar 

  • McDonald JD, Campen MJ, Harrod KS, Seagrave J, Seilkop SK, Mauderly JL (2011) Engine-operating load influences diesel exhaust composition and cardiopulmonary and immune responses. Environ Health Perspect 119:1136–1141. doi:10.1289/ehp.1003101

    Article  Google Scholar 

  • Miller-Schulze JP et al (2010) Exposures to particulate air pollution and nitro-polycyclic aromatic hydrocarbons among taxi drivers in Shenyang. China Environ Sci Technol 44:216–221. doi:10.1021/es802392u

    Article  CAS  Google Scholar 

  • Moller P, Folkmann JK, Forchhammer L, Brauner EV, Danielsen PH, Risom L, Loft S (2008) Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett 266:84–97. doi:10.1016/j.canlet.2008.02.030

    Article  CAS  Google Scholar 

  • Napierska D et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853. doi:10.1002/smll.200800461

    Article  CAS  Google Scholar 

  • Ntziachristos L, Froines JR, Cho AK, Sioutas C (2007) Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Particle Fibre Toxicol 4:5. doi:10.1186/1743-8977-4-5

    Article  Google Scholar 

  • Okayama Y, Kuwahara M, Suzuki AK, Tsubone H (2006) Role of Reactive Oxygen Species on Diesel Exhaust Particle-Induced Cytotoxicity in Rat. Cardiac Myocytes J Toxicol Environ Health, Part A 69:1699–1710. doi:10.1080/15287390600631078

    Article  CAS  Google Scholar 

  • Pan C-JG, Schmitz DA, Cho AK, Froines J, Fukuto JM (2004) Inherent redox properties of diesel exhaust particles: catalysis of the generation of reactive oxygen species by biological reductants. Toxicol Sci 81:225–232. doi:10.1093/toxsci/kfh199

    Article  CAS  Google Scholar 

  • Peplow PV, Chatterjee MP (2013) A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine 62:1–21. doi:10.1016/j.cyto.2013.02.015

    Article  CAS  Google Scholar 

  • Poss J et al (2013) Diesel exhaust particles impair endothelial progenitor cells, compromise endothelial integrity, reduce neoangiogenesis, and increase atherogenesis in mice. Cardiovasc Toxicol 13:290–300. doi:10.1007/s12012-013-9208-0

    Article  Google Scholar 

  • Robinson AL et al (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262. doi:10.1126/science.1133061

    Article  CAS  Google Scholar 

  • Rudell B, Sandstrom T, Hammarstrom U, Ledin ML, Horstedt P, Stjernberg N (1994) Evaluation of an exposure setup for studying effects of diesel exhaust in humans. Int Arch Occup Environ Health 66:77–83. doi:10.1007/BF00383361

    Article  CAS  Google Scholar 

  • Sawant AA et al (2008) Generation and characterization of diesel exhaust in a facility for controlled human exposures. J Air Waste Manage Assoc 58:829–837

    Article  CAS  Google Scholar 

  • Scheepers PT, Bos RP (1992) Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products. Int Arch Occup Environ Health 64:149–161

    Article  CAS  Google Scholar 

  • Schuetzle D, Perez JM (1983) Factors influencing the emissions of nitrated-polynuclear aromatic hydrocarbons (Nitro-PAH) from diesel engines. J Air Pollut Control Assoc 33:751–755. doi:10.1080/00022470.1983.10465636

    Article  CAS  Google Scholar 

  • Sexton KG, Jeffries HE, Jang M, Kamens RM, Doyle M, Voicu I, Jaspers I (2004) Photochemical products in urban mixtures enhance inflammatory responses in lung cells. Inhal Toxicol 16(Suppl 1):107–114. doi:10.1080/08958370490443196

    Article  CAS  Google Scholar 

  • Sharma M, Agarwal AK, Bharathi KVL (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028. doi:10.1016/j.atmosenv.2004.12.047

    Article  CAS  Google Scholar 

  • Shi JP, Mark D, Harrison RM (2000) Characterization of particles from a current technology heavy-duty diesel engine. Environ Sci Technol 34:748–755. doi:10.1021/es990530z

    Article  CAS  Google Scholar 

  • Shinyashiki M et al (2009) Electrophilic and redox properties of diesel exhaust particles. Environ Res 109:239–244. doi:10.1016/j.envres.2008.12.008

    Article  CAS  Google Scholar 

  • Sjogren M, Li H, Banner C, Rafter J, Westerholm R, Rannug U (1996) Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels. Chem Res Toxicol 9:197. doi:10.1021/tx950095w

    Article  CAS  Google Scholar 

  • Sobus JR, Pleil JD, Madden MC, Funk WE, Hubbard HF, Rappaport SM (2008) Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study. Environ SciTechnol 42:8822–8828. doi:10.1021/es800813v

    Article  CAS  Google Scholar 

  • Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol (Clifton, NJ) 716:157–168. doi:10.1007/978-1-61779-012-6_9

    Article  CAS  Google Scholar 

  • Tau J, Novaes P, Matsuda M, Tasat DR, Saldiva PH, Berra A (2013) Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Invest Ophthalmol Vis Sci 54:4759–4765. doi:10.1167/iovs.12-10541

    Article  CAS  Google Scholar 

  • Totlandsdal AI et al (2012) Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicol Lett 208:262–268. doi:10.1016/j.toxlet.2011.10.025

    Article  CAS  Google Scholar 

  • Vedal S et al (2013) National Particle Component Toxicity (NPACT) Initiative report on cardiovascular effects. Health Effects Institute, Boston

    Google Scholar 

  • Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-kappaB, and MAPK pathways. Arch Toxicol 86:879–896. doi:10.1007/s00204-012-0845-z

    Article  CAS  Google Scholar 

  • Weitkamp EA, Sage AM, Pierce JR, Donahue NM, Robinson AL (2007) Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ Sci Technol 41:6969–6975. doi:10.1021/es070193r

    Article  CAS  Google Scholar 

  • Weldy CS, Wilkerson HW, Larson TV, Stewart JA, Kavanagh TJ (2011) Diesel particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes. Toxicol vitro: an Int J Publ Assoc BIBRA 25:2064–2073. doi:10.1016/j.tiv.2011.08.008

    Article  CAS  Google Scholar 

  • World Health Organization (2006) Air Quality Guidelines: Global Update 2005. Druckpartner Moser, Germany

  • Yin F et al (2013) Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol 33:1153–1161. doi:10.1161/ATVBAHA.112.300552

    Article  CAS  Google Scholar 

  • You Y et al (2012) Anti-atherosclerotic function of Astragali Radix extract: downregulation of adhesion molecules in vitro and in vivo. BMC Complement Altern Med 12:54

    Article  Google Scholar 

  • Zhang J, McCreanor JE, Cullinan P, Chung K, Ohman-Strickland P, Han I-K JL, Nieuwenhuijsen MJ (2009) Health effects of real-world exposure to diesel exhaust in persons with asthma vol 138. Health Effects Institute, Boston

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by NIH/NIEHS Grants T32ES015459, T32ES007032, P50ES015915, and P30ES007033, and the Amgen Scholar’s Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Richman Fox.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, J.R., Cox, D.P., Drury, B.E. et al. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. Air Qual Atmos Health 8, 507–519 (2015). https://doi.org/10.1007/s11869-014-0301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-014-0301-8

Keywords

Navigation