Skip to main content

Advertisement

Log in

Indoor Allergens and Allergic Respiratory Disease

  • Immunologic/Diagnostic Tests in Allergy ( M Chapman and A Pomés, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of review

The purpose of this review is to evaluate the most recent findings on indoor allergens and their impact on allergic diseases.

Recent findings

Indoor allergens are present inside buildings (home, work environment, school), and given the chronic nature of the exposures, indoor allergies tend to be associated with the development of asthma. The most common indoor allergens are derived from dust mites, cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular biology and proteomics has led to the identification, cloning, and expression of new indoor allergens, which have facilitated research to elucidate their role in allergic diseases. This review is an update on new allergens and their molecular features, together with the most recent reports on their avoidance for allergy prevention and their use for diagnosis and treatment.

Summary

Research progress on indoor allergens will result in the development of new diagnostic tools and design of coherent strategies for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance,•• Of major importance

  1. Platts-Mills TA, Vervloet D, Thomas WR, Aalberse RC, Chapman MD. Indoor allergens and asthma: report of the Third International Workshop. J Allergy Clin Immunol. 1997;100:S2–24.

    Article  CAS  PubMed  Google Scholar 

  2. Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect. 2015;123:6–20.

    Article  PubMed  Google Scholar 

  3. Pomés A et al. 100 years later: celebrating the contributions of x-ray crystallography to allergy and clinical immunology. J Allergy Clin Immunol. 2015;136:29–37. This is a commemorative review of the 100th anniversary of X-ray crystallography, showing the contributions of this discipline to allergy and clinical immunology.

    Article  PubMed  CAS  Google Scholar 

  4. Chapman MD, Platts-Mills TA. Purification and characterization of the major allergen from Dermatophagoides pteronyssinus-antigen P1. J Immunol. 1980;125:587–92.

    CAS  PubMed  Google Scholar 

  5. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source of house dust allergens. Nature. 1981;289:592–3.

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez-Borges M, Suarez CR, Capriles-Hulett A, Caballero-Fonseca F, Fernandez-Caldas E. Anaphylaxis from ingestion of mites: pancake anaphylaxis. J Allergy Clin Immunol. 2013;131:31–5.

    Article  PubMed  Google Scholar 

  7. Thomas WR. House dust allergy and immunotherapy. Hum Vaccin Immunother. 2012;8:1469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chruszcz M et al. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J Mol Biol. 2009;386:520–30.

    Article  CAS  PubMed  Google Scholar 

  9. Chruszcz M et al. Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem. 2012;287:7388–98.

    Article  CAS  PubMed  Google Scholar 

  10. Osinski T et al. Structural analysis of Der p 1-antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. J Immunol. 2015;195:307–16. Detailed antigenic analysis of Der p 1 based on the X-ray crystal structures of three complexes of Der p 1 with monoclonal antibodies that inhibit IgE antibody binding. A comparative analysis of these complexes with proteins/peptides-antibody complexes that are available in the Protein Data Bank is presented.

    Article  CAS  PubMed  Google Scholar 

  11. Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity. Trends Immunol. 2008;29:633–42.

    Article  CAS  PubMed  Google Scholar 

  12. Trompette A et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009;457:585–8.

    Article  CAS  PubMed  Google Scholar 

  13. Choi HJ et al. The TLR4-associated phospholipase D1 activation is crucial for Der f 2-induced IL-13 production. Allergy. 2015;70:1569–79.

    Article  CAS  PubMed  Google Scholar 

  14. Mueller GA et al. Der p 5 crystal structure provides insight into the group 5 dust mite allergens. J Biol Chem. 2010;285:25394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mueller GA et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol. 2010;125:909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mueller GA et al. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: relevance for molecular diagnosis. J Allergy Clin Immunol. 2015;136:1369–77. This article provides the molecular structural basis for the observed lack of significant IgE cross-reactivity observed among four homologous glutathione S-transferase allergens from cockroach (Bla g 5), mite (Der p 8, Blo t 8) and the helminth Ascaris (Asc s 13), in a North American population. This study has implications for the use of each GST for accurate molecular diagnosis in different geographic areas.

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Matas MA et al. Cloning and characterization of tropomyosin from the mite Chortoglyphus arcuatus. Mol Immunol. 2015;68:634–40.

    Article  CAS  PubMed  Google Scholar 

  18. Weghofer M et al. Comparison of purified Dermatophagoides pteronyssinus allergens and extract by two-dimensional immunoblotting and quantitative immunoglobulin E inhibitions. Clin Exp Allergy. 2005;35:1384–91.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee S et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis. J Invest Dermatol. 2015;135:102–9. This study reports paramyosin Der p 11 as a major marker for house dust mite allergic patients suffering from atopic dermatitis. Der p 11 is, together with Der p 10, Der p 14 and Der p 18, one of the few dust mite allergens present primarily in mite bodies, but not in feces. Patients might become sensitized to these mite body-associated allergens by skin contact.

    Article  CAS  PubMed  Google Scholar 

  20. Weghofer M et al. Identification of Der p 23, a peritrophin-like protein, as a new major Dermatophagoides pteronyssinus allergen associated with the peritrophic matrix of mite fecal pellets. J Immunol. 2013;190:3059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banerjee S et al. Conversion of Der p 23, a new major house dust mite allergen, into a hypoallergenic vaccine. J Immunol. 2014;192:4867–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller GA et al. Serological, genomic and structural analyses of the major mite allergen Der p 23. Clin Exp Allergy. 2016;46:365–76.

    Article  CAS  PubMed  Google Scholar 

  23. Soh WT et al. The house dust mite major allergen Der p 23 displays O-glycan-independent IgE reactivities but no chitin-binding activity. Int Arch Allergy Immunol. 2015;168:150–60.

    Article  CAS  PubMed  Google Scholar 

  24. An S et al. Dermatophagoides farinae allergens diversity identification by proteomics. Mol Cell Proteomics. 2013;12:1818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan TF et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol. 2015;135:539–48. Genomic, transcriptomic, and proteomic experiments were used to produce a house dust mite genome draft from Dermatophagoides farinae that revealed allergen genes and a diverse endosymbiotic microbiome. This study will allow identification and characterization of new mite allergens.

    Article  CAS  PubMed  Google Scholar 

  26. Bernton HS, Brown H. Insect allergy—preliminary studies of the cockroach. J Allergy Clin Immunol. 1964;35:506–13.

    CAS  Google Scholar 

  27. Barbosa MC et al. Efficacy of recombinant allergens for diagnosis of cockroach allergy in patients with asthma and/or rhinitis. Int Arch Allergy Immunol. 2013;161:213–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenstreich DL et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336:1356–63.

    Article  CAS  PubMed  Google Scholar 

  29. Gruchalla RS et al. Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol. 2005;115:478–85.

    Article  PubMed  Google Scholar 

  30. Mueller GA et al. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J Allergy Clin Immunol. 2013;132:1420–6.

    Article  CAS  PubMed  Google Scholar 

  31. Wünschmann S, Gustchina A, Chapman MD, Pomés A. Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol. 2005;116:140–5.

    Article  PubMed  CAS  Google Scholar 

  32. Li M et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem. 2008;283:22806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186:333–40.

    Article  CAS  PubMed  Google Scholar 

  34. Glesner J et al. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS ONE. 2011;6:e22223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woodfolk JA et al. Antigenic determinants of the bilobal cockroach allergen Bla g 2. J Biol Chem. 2016;291:2288–301. A rational design of site-directed mutagenesis was effective in producing a Bla g 2 mutant, which maintained the same fold as wild type Bla g 2 and showed T-cell modulatory capacity. This antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.

    Article  CAS  PubMed  Google Scholar 

  36. Wu CH, Lee MF, Wang NM, Luo SF. Sequencing and immunochemical characterization of the American cockroach per a 3 (Cr-PI) isoallergenic variants. Mol Immunol. 1997;34:1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Tan YW et al. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284:3148–57.

    Article  CAS  PubMed  Google Scholar 

  38. Satinover SM et al. Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol. 2005;115:803–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hindley J et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol. 2006;117:1389–95.

    Article  CAS  PubMed  Google Scholar 

  40. Sudha VT, Arora N, Gaur SN, Pasha S, Singh BP. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy. 2008;63:768–76.

    Article  CAS  PubMed  Google Scholar 

  41. Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics. 2010;10:3854–67.

    Article  CAS  PubMed  Google Scholar 

  42. Jeong KY et al. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int Arch Allergy Immunol. 2013;161:315–24.

    Article  CAS  PubMed  Google Scholar 

  43. Fang Y et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70:1674–8.

  44. Dillon MB et al. Different Bla-g T cell antigens dominate responses in asthma versus rhinitis subjects. Clin Exp Allergy. 2015;45:1856–67.

    Article  CAS  PubMed  Google Scholar 

  45. Virtanen T, Kinnunen T, Rytkonen-Nissinen M. Mammalian lipocalin allergens—insights into their enigmatic allergenicity. Clin Exp Allergy. 2012;42:494–504.

    Article  CAS  PubMed  Google Scholar 

  46. Kuehn A, Hilger C. Animal allergens: common protein characteristics featuring their allergenicity. Front Immunol. 2015;6:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kaiser L et al. Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J Mol Biol. 2007;370:714–27.

    Article  CAS  PubMed  Google Scholar 

  48. van Ree R, van Leeuwen WA, Bulder I, Bond J, Aalberse RC. Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol. 1999;104:1223–30.

    Article  PubMed  Google Scholar 

  49. Charpin C et al. Fel d I allergen distribution in cat fur and skin. J Allergy Clin Immunol. 1991;88:77–82.

    Article  CAS  PubMed  Google Scholar 

  50. De Andrade AD et al. Fel d I levels in cat anal glands. Clin Exp Allergy. 1996;26:178–80.

    Article  PubMed  Google Scholar 

  51. Custovic A et al. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax. 1998;53:33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Almqvist C et al. Worsening of asthma in children allergic to cats, after indirect exposure to cat at school. Am J Respir Crit Care Med. 2001;163:694–8.

    Article  CAS  PubMed  Google Scholar 

  53. Smith W et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004;34:1732–8.

    Article  CAS  PubMed  Google Scholar 

  54. Smith W et al. Two newly identified cat allergens: the von Ebner gland protein Fel d 7 and the latherin-like protein Fel d 8. Int Arch Allergy Immunol. 2011;156:159–70.

    Article  CAS  PubMed  Google Scholar 

  55. van RR, van Leeuwen WA, Bulder I, Bond J, Aalberse RC. Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol. 1999;104:1223–30.

    Article  Google Scholar 

  56. Konradsen JR et al. Allergy to furry animals: new insights, diagnostic approaches, and challenges. J Allergy Clin Immunol. 2015;135:616–25.

    Article  PubMed  Google Scholar 

  57. Konieczny A et al. The major dog allergens, Can f 1 and Can f 2, are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms. Immunology. 1997;92:577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de GH, Goei KG, Van SP, Aalberse RC. Affinity purification of a major and a minor allergen from dog extract: serologic activity of affinity-purified Can f I and of Can f I-depleted extract. J Allergy Clin Immunol. 1991;87:1056–65.

    Article  Google Scholar 

  59. Nicholas C et al. Dog characteristics and allergen levels in the home. Ann Allergy Asthma Immunol. 2010;105:228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Polovic N et al. Dog saliva—an important source of dog allergens. Allergy. 2013;68:585–92. The study describes the presence of new dog allergens in saliva not previously identified in dander. Among patients that were IgE negative to dander, but with symptoms to dog, 20% were IgE positive to saliva. The authors discuss the importance of saliva in addition to dander proteins in allergy diagnostics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramadour M et al. Dog factor differences in Can f 1 allergen production. Allergy. 2005;60:1060–4.

    Article  CAS  PubMed  Google Scholar 

  62. Vredegoor DW, Willemse T, Chapman MD, Heederik DJ, Krop EJ. Can f 1 levels in hair and homes of different dog breeds: lack of evidence to describe any dog breed as hypoallergenic. J Allergy Clin Immunol. 2012;130:904–9.

    Article  CAS  PubMed  Google Scholar 

  63. Mattsson L, Lundgren T, Everberg H, Larsson H, Lidholm J. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009;123:362–8.

    Article  CAS  PubMed  Google Scholar 

  64. Hilger C, Kuehn A, Hentges F. Animal lipocalin allergens. Curr Allergy Asthma Rep. 2012;12:438–47.

    Article  CAS  PubMed  Google Scholar 

  65. Polovic N et al. Dog saliva—an important source of dog allergens. Allergy. 2013;68:585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saarelainen S et al. Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy. 2004;34:1576–82.

    Article  CAS  PubMed  Google Scholar 

  67. Rytkonen-Nissinen M et al. IgE reactivity of the dog lipocalin allergen Can f 4 and the development of a sandwich ELISA for its quantification. Allergy Asthma Immunol Res. 2015;7:384–92.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jeal H, Jones M. Allergy to rodents: an update. Clin Exp Allergy. 2010;40:1593–601.

    Article  CAS  PubMed  Google Scholar 

  69. Simons E, Curtin-Brosnan J, Buckley T, Breysse P, Eggleston PA. Indoor environmental differences between inner city and suburban homes of children with asthma. J Urban Health. 2007;84:577–9.

  70. Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015;135:110–22. Longitudinal studies evaluating exposure to indoor fungi before the development of asthma symptoms suggested that Penicillium , Aspergillus , and Cladosporium species pose a respiratory health risk in susceptible populations. Increased exacerbation of current asthma symptoms in children and adults were linked to increased levels of Penicillium , Aspergillus , Cladosporium , and Alternaria species.

  71. Perry T, Matsui E, Merriman B, Duong T, Eggleston P. The prevalence of rat allergen in inner-city homes and its relationship to sensitization and asthma morbidity. J Allergy Clin Immunol. 2003;112:346–52.

    Article  PubMed  Google Scholar 

  72. Liccardi G et al. Sensitization to rodents (mouse/rat) in an urban atopic population without occupational exposure living in Naples. Italy Eur Ann Allergy Clin Immunol. 2012;44:200–4.

    CAS  PubMed  Google Scholar 

  73. Sedaghat AR et al. Mouse sensitivity is an independent risk factor for rhinitis in children with asthma. J Allergy Clin Immunol Pract. 2016;4:82–8.

    Article  PubMed  Google Scholar 

  74. Ohman Jr JL et al. Distribution of airborne mouse allergen in a major mouse breeding facility. J Allergy Clin Immunol. 1994;94:810–7.

    Article  PubMed  Google Scholar 

  75. Krop EJ, Doekes G, Stone MJ, Aalberse RC, van der Zee JS. Spreading of occupational allergens: laboratory animal allergens on hair-covering caps and in mattress dust of laboratory animal workers. Occup Environ Med. 2007;64:267–72.

    Article  CAS  PubMed  Google Scholar 

  76. Krakowiak A, Szulc B, Gorski P. Allergy to laboratory animals in children of parents occupationally exposed to mice, rats and hamsters. Eur Respir J. 1999;14:352–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015;135:110–22.

    Article  PubMed  Google Scholar 

  78. Fukutomi Y, Taniguchi M. Sensitization to fungal allergens: resolved and unresolved issues. Allergol Int. 2015;64:321–31.

    Article  PubMed  Google Scholar 

  79. Gergen PJ, Turkeltaub PC. The association of individual allergen reactivity with respiratory disease in a national sample: data from the second National Health and Nutrition Examination Survey, 1976-80 (NHANES II). J Allergy Clin Immunol. 1992;90:579–88.

    Article  CAS  PubMed  Google Scholar 

  80. Kleine-Tebbe J et al. Predominance of the major allergen (Alt a I) in Alternaria sensitized patients. Clin Exp Allergy. 1993;23:211–8.

    Article  CAS  PubMed  Google Scholar 

  81. Chruszcz M et al. Alternaria alternata allergen Alt A 1: a unique beta-barrel protein dimer found exclusively in fungi. J Allergy Clin Immunol. 2012;130:241–7.

  82. Breitenbach M, Simon-Nobbe B. The allergens of Cladosporium herbarum and Alternaria alternata. Chem Immunol. 2002;81:48–72.

    Article  CAS  PubMed  Google Scholar 

  83. Bush RK, Sanchez H, Geisler D. Molecular cloning of a major Alternaria alternata allergen, rAlt a 2. J Allergy Clin Immunol. 1999;104:665–71.

    Article  CAS  PubMed  Google Scholar 

  84. Vijay HM, Kurup VP. Fungal allergens. Clin Allergy Immunol. 2008;21:141–60.

    CAS  PubMed  Google Scholar 

  85. Achatz G et al. Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol. 1995;32:213–27.

    Article  CAS  PubMed  Google Scholar 

  86. Zureik M et al. Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. BMJ. 2002;325:411–4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Breitenbach M et al. Enolases are highly conserved fungal allergens. Int Arch Allergy Immunol. 1997;113:114–7.

    Article  CAS  PubMed  Google Scholar 

  88. Knutsen AP et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012;129:280–91.

    Article  PubMed  Google Scholar 

  89. Kurup VP et al. Selected recombinant Aspergillus fumigatus allergens bind specifically to IgE in ABPA. Clin Exp Allergy. 2000;30:988–93.

    Article  CAS  PubMed  Google Scholar 

  90. Arruda LK, Platts-Mills TA, Fox JW, Chapman MD. Aspergillus fumigatus allergen I, a major IgE-binding protein, is a member of the mitogillin family of cytotoxins. J Exp Med. 1990;172:1529–32.

    Article  CAS  PubMed  Google Scholar 

  91. Shen HD et al. Characterization of allergens from Penicillium oxalicum and P. notatum by immunoblotting and N-terminal amino acid sequence analysis. Clin Exp Allergy. 1999;29:642–51.

    Article  CAS  PubMed  Google Scholar 

  92. Chow LP, Chiou SH, Hsiao MC, Yu CJ, Chiang BL. Characterization of Pen n 13, a major allergen from the mold Penicillium notatum. Biochem Biophys Res Commun. 2000;269:14–20.

    Article  CAS  PubMed  Google Scholar 

  93. Shen HD et al. Complementary DNA cloning and immunologic characterization of a new Penicillium citrinum allergen (Pen c 3). J Allergy Clin Immunol. 2000;105:827–33.

    Article  CAS  PubMed  Google Scholar 

  94. Becker S, Groger M, Canis M, Pfrogner E, Kramer MF. Tropomyosin sensitization in house dust mite allergic patients. Eur Arch Otorhinolaryngol. 2012;269:1291–6.

    Article  PubMed  Google Scholar 

  95. Ayuso R, Lehrer SB, Reese G. Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol. 2002;127:27–37.

    Article  CAS  PubMed  Google Scholar 

  96. Spitzauer S. Allergy to mammalian proteins: at the borderline between foreign and self? Int Arch Allergy Immunol. 1999;120:259–69.

    Article  CAS  PubMed  Google Scholar 

  97. Quirce S et al. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 2001;56:754–62.

    Article  CAS  PubMed  Google Scholar 

  98. Posthumus J et al. Initial description of pork-cat syndrome in the United States. J Allergy Clin Immunol. 2013;131:923–5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zimmer J, Vieths S, Kaul S. Standardization and regulation of allergen products in the European Union. Curr Allergy Asthma Rep. 2016;16:21.

    Article  PubMed  CAS  Google Scholar 

  100. van Ree R et al. The CREATE project: development of certified reference materials for allergenic products and validation of methods for their quantification. Allergy. 2008;63:310–26.

    Article  PubMed  CAS  Google Scholar 

  101. Himly M et al. Standardization of allergen products: 2. Detailed characterization of GMP-produced recombinant Phl p 5.0109 as European Pharmacopoeia reference standard. Allergy. 2015.

  102. Asarnoj A et al. Sensitization to cat and dog allergen molecules in childhood and prediction of symptoms of cat and dog allergy in adolescence: a BAMSE/MeDALL study. J Allergy Clin Immunol. 2015.

  103. Arruda LK et al. Recombinant allergens for diagnosis of cockroach allergy. Curr Allergy Asthma Rep. 2014;14:428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Resch Y et al. Different IgE recognition of mite allergen components in asthmatic and nonasthmatic children. J Allergy Clin Immunol. 2015;136:1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. King EM et al. A multi-center ring trial of allergen analysis using fluorescent multiplex array technology. J Immunol Methods. 2012.

  106. Filep S et al. A multi-allergen standard for the calibration of immunoassays: CREATE principles applied to eight purified allergens. Allergy. 2012;67:235–41.

    Article  CAS  PubMed  Google Scholar 

  107. Chapman MD, Briza P. Molecular approaches to allergen standardization. Curr Allergy Asthma Rep. 2012;12:478–84.

    Article  CAS  PubMed  Google Scholar 

  108. Phipatanakul W et al. Environmental assessment and exposure reduction of rodents: a practice parameter. Ann Allergy Asthma Immunol. 2012;109:375–87.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Portnoy J et al. Environmental assessment and exposure control: a practice parameter—furry animals. Ann Allergy Asthma Immunol. 2012;108:223–15.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Portnoy J et al. Environmental assessment and exposure control of dust mites: a practice parameter. Ann Allergy Asthma Immunol. 2013;111:465–507.

    Article  PubMed  Google Scholar 

  111. Portnoy J et al. Environmental assessment and exposure reduction of cockroaches: a practice parameter. J Allergy Clin Immunol. 2013;132:802–8.

    Article  PubMed  Google Scholar 

  112. Calderon MA, Casale TB, Nelson HS, Demoly P. An evidence-based analysis of house dust mite allergen immunotherapy: a call for more rigorous clinical studies. J Allergy Clin Immunol. 2013;132:1322–36.

    Article  CAS  PubMed  Google Scholar 

  113. Wood RA et al. Development of cockroach immunotherapy by the Inner-City Asthma Consortium. J Allergy Clin Immunol. 2014;133:846–52.

    Article  PubMed  Google Scholar 

  114. Cromwell O, Hafner D, Nandy A. Recombinant allergens for specific immunotherapy. J Allergy Clin Immunol. 2011;127:865–72.

    Article  CAS  PubMed  Google Scholar 

  115. Passalacqua G et al. Randomized double-blind controlled study with sublingual carbamylated allergoid immunotherapy in mild rhinitis due to mites. Allergy. 2006;61:849–54.

    Article  CAS  PubMed  Google Scholar 

  116. Bussmann C et al. Clinical improvement and immunological changes in atopic dermatitis patients undergoing subcutaneous immunotherapy with a house dust mite allergoid: a pilot study. Clin Exp Allergy. 2007;37:1277–85.

    Article  CAS  PubMed  Google Scholar 

  117. Urry ZL et al. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1alpha, 25-dihydroxyvitamin D3. BMC Immunol. 2014;15:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Patel D et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol. 2013;131:103–9.

    Article  CAS  PubMed  Google Scholar 

  119. Couroux P, Patel D, Armstrong K, Larche M, Hafner RP. Fel d 1-derived synthetic peptide immuno-regulatory epitopes show a long-term treatment effect in cat allergic subjects. Clin Exp Allergy. 2015;45:974–81.

    Article  CAS  PubMed  Google Scholar 

  120. Asturias JA et al. Engineering of major house dust mite allergens Der p 1 and Der p 2 for allergen-specific immunotherapy. Clin Exp Allergy. 2009;39:1088–98.

    Article  CAS  PubMed  Google Scholar 

  121. Chen KW et al. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J Allergy Clin Immunol. 2012;130:435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen KW et al. Reduction of the in vivo allergenicity of Der p 2, the major house-dust mite allergen, by genetic engineering. Mol Immunol. 2008;45:2486–98.

    Article  CAS  PubMed  Google Scholar 

  123. Pomés A et al. Antigenic determinants on Der p 1 identified by mutagenesis analysis based on the structure of allergen-antibody complexes. J Allergy Clin Immunol. 2014;133:AB164.

    Article  Google Scholar 

  124. Li M et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186:333–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI077653. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pomés.

Ethics declarations

Conflict of Interest

Drs. Pomés, Chapman, and Wünschmann declare a grant from NIAID. Dr. Chapman is founder and a co-owner of Indoor Biotechnologies Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunologic/Diagnostic Tests in Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomés, A., Chapman, M.D. & Wünschmann, S. Indoor Allergens and Allergic Respiratory Disease. Curr Allergy Asthma Rep 16, 43 (2016). https://doi.org/10.1007/s11882-016-0622-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0622-9

Keywords

Navigation