Skip to main content
Log in

Robotics in the rehabilitation treatment of patients with stroke

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of permanent disability despite continued advances in prevention and novel interventional treatments. Post-stroke neuro-rehabilitation programs teach compensatory strategies that alter the degree of permanent disability. Robotic devices are new tools for therapists to deliver enhanced sensorimotor training and concentrate on impairment reduction. Results from several groups have registered success in reducing impairment and increasing motor power with task-specific exercise delivered by the robotic devices. Enhancing the rehabilitation experience with task-specific repetitive exercise marks a different approach to the patient with stroke. The clinical challenge will be to streamline, adapt, and expand the robot protocols to accommodate healthcare economies, to determine which patients sustain the greatest benefit, and to explore the relationship between impairment reduction and disability level. With these new tools, therapists will measure aspects of outcome objectively and contribute to the emerging scientific basis of neuro-rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Vaughan CJ, Delanty N, Basson CT: Statin therapy and stroke prevention. Curr Opin Cardiol 2001, 16:219–224.

    Article  PubMed  CAS  Google Scholar 

  2. Callahan A: Cerebrovascular disease and statins: a potential addition to the therapeutic armamentarium for stroke prevention. Am J Cardiol 2001, 88:33J-37J.

    Article  PubMed  CAS  Google Scholar 

  3. Broderick J, Brott T, Kothari R, et al.: The Greater Cincinnati/Northern Kentucky Stroke Study: preliminary first-ever and total incidence rates of stroke among blacks. Stroke 1998, 29:415–421.

    PubMed  CAS  Google Scholar 

  4. Dromerick AW, Edwards DF, Hahn M: Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 2000, 31:2984–2988.

    PubMed  CAS  Google Scholar 

  5. van der Lee JH, Wagenaar RC, Lankhorst GJ, et al.: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 1999, 30:2369–2375.

    PubMed  Google Scholar 

  6. van Der Lee JH: Constraint-induced therapy for stroke: more of the same or something completely different? Curr Opin Neurol 2001, 14:741–744.

    Article  PubMed  Google Scholar 

  7. Cramer SC, Moore CI, Finklestein SP, Rosen BR: A pilot study of somatotopic mapping after cortical infarct. Stroke 2000, 31:668–671.

    PubMed  CAS  Google Scholar 

  8. Cramer SC, Nelles G, Schaechter JD, et al.: A functional MRI study of three motor tasks in the evaluation of stroke recovery. Neurorehabil Neural Repair 2001, 15:1–8.

    Article  PubMed  CAS  Google Scholar 

  9. Miyai I, Suzuki T, Mikami A, Kubota K, Volpe BT: Functional MRI demonstrates persistent regional premotor cortex activation in patients with pure motor stroke and Wallerian degeneration. J Stroke Cerebrovasc Dis 2002, 10:210–216.

    Article  Google Scholar 

  10. Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC: Arm training induced brain plasticity in stroke studied with serial positron emission tomography. Neuroimage 2001, 13(6 Pt 1):1146–1154.

    Article  PubMed  CAS  Google Scholar 

  11. Marshall RS, Perera GM, Lazar RM, et al.: Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000, 31:656–661.

    PubMed  CAS  Google Scholar 

  12. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM: Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 1996, 16:785–807.

    PubMed  CAS  Google Scholar 

  13. Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74:27–55.

    Article  PubMed  CAS  Google Scholar 

  14. Schallert T, Kozlowski DA, Humm JL, Cocke RR: Use-dependent structural events in recovery of function. Adv Neurol 1997, 73:229–238.

    PubMed  CAS  Google Scholar 

  15. Feys HM, De Weerdt WJ, Selz BE, et al.: Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke 1998, 29:785–792.

    PubMed  CAS  Google Scholar 

  16. Sunderland A, Fletcher D, Bradley L, et al.: Enhanced physical therapy for arm function after stroke: a one year follow up study. J Neurol Neurosurg Psychiatry 1994, 57:856–858.

    Article  PubMed  CAS  Google Scholar 

  17. Kwakkel G, Wagenaar RC, Twisk WJ, Lankhorst GJ, Koetsier JC: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 1999, 354:191–196.

    Article  PubMed  CAS  Google Scholar 

  18. Edgerton VR, Leon RD, Harkema SJ, et al.: Retraining the injured spinal cord. J Physiol 2001, 533(Pt 1):15–22.

    Article  PubMed  CAS  Google Scholar 

  19. Hesse S, Uhlenbrock D, Werner C, Bardeleben A: A mechanized gait trainer for restoring gait in nonambulatory subjects. Arch Phys Med Rehabil 2000, 81:1158–1161.

    Article  PubMed  CAS  Google Scholar 

  20. Barbeau H, McCrea DA, O’Donovan MJ, et al.: Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev 1999, 30:27–51.

    Article  PubMed  CAS  Google Scholar 

  21. Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A: Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil 1999, 80:225–235.

    Article  PubMed  CAS  Google Scholar 

  22. Daly JJ, Ruff RL, Haycook K, et al.: Feasibility of gait training for acute stroke patients using FNS with implanted electrodes. J Neurol Sci 2000, 179(suppl 1–2):103–107.

    Article  PubMed  CAS  Google Scholar 

  23. Daly JJ, Ruff RL: Electrically induced recovery of gait components for older patients with chronic stroke. Am J Phys Med Rehabil 2000, 79:349–360.

    Article  PubMed  CAS  Google Scholar 

  24. Chae J, Bethoux F, Bohine T, et al.: Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke 1998, 29:975–979.

    PubMed  CAS  Google Scholar 

  25. Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ: Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 1999, 30:1384–1389.

    PubMed  CAS  Google Scholar 

  26. Hogan N: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Transactions on Automatic Control 1984, AC-29:681–690.

    Article  Google Scholar 

  27. Hogan N, Krebs HI, Sharon A, Charnnarong J: Interactive robot therapist. November 14, 1995, MIT: #5,466,213: USA.

  28. Flash T, Hogan N: The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 1985, 5:1688–1703.

    PubMed  CAS  Google Scholar 

  29. Krebs HI, Aisen ML, Volpe BT, Hogan N: Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A 1999, 96:4645–4649.

    Article  PubMed  CAS  Google Scholar 

  30. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 1997, 54:443–446.

    PubMed  CAS  Google Scholar 

  31. Volpe BT, Krebs HI, Hogan N, et al.: Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 1999, 53:1874–1876.

    PubMed  CAS  Google Scholar 

  32. Volpe BT, Krebs HI, Hogan N, et al.: A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000, 54:1938–1944.

    PubMed  CAS  Google Scholar 

  33. Volpe BT, Krebs HI, Hogan N: Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol 2001, 14:745–752.

    Article  PubMed  CAS  Google Scholar 

  34. Krebs HI, Volpe BT, Aisen ML, Hogan N: Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev 2000, 37:639–652.

    PubMed  CAS  Google Scholar 

  35. Krebs HI, Volpe BT, Palazzolo J, et al.: Robot aided neuro-rehabilitation in stroke: Interim results on follow-up of 76 patients and on movement indices. In Integration of Assistive Technology in the Information Age. Edited by Mokhtari M. Amsterdam: IOS Press; 2001:45–59.

    Google Scholar 

  36. Krebs HI, Volpe BT, Ferraro M, et al.: Robot Aided NeuroRehabilitation: From evidence based to science based rehabilitation. Topics in Stroke Rehabilitation: Clin Applications New Technol 2002, 8:54–57.

    CAS  Google Scholar 

  37. Ferraro M, Demaio JH, Krol J, et al.: Assessing the motor status score: a scale for the evaluation of upper limb motor outcomes in patients after stroke. NeuroRehabil and Neural Repair, submitted.

  38. Lum PS, Reinkensmeyer DJ, Lehman S: Robotic assist devices for bimanual physical therapy: Preliminary experiments. IEEE Trans Rehab Engin 1993, 1:185–191.

    Article  Google Scholar 

  39. Lum PS, Burgar CG, Kenney DE, Van der Loos HF: Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 1999, 46:652–662.

    Article  PubMed  CAS  Google Scholar 

  40. Burgar CG, Lum PS, Shor PC, Van der Loos HF: Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 2000, 37:663–673.

    PubMed  CAS  Google Scholar 

  41. Shor PC, Lum PS, Burgar CG, et al.: The effect of robot aided therapy on upper extremity joint passive range of motion and pain. In Integration of Assistive Technology in the Information Age. Edited by Mokhtari M. Amsterdam: IOS Press; 2001:79–83.

    Google Scholar 

  42. Reinkensmeyer DJ, Kahn LE, Averbuch M, et al.: Understanding and treating arm movement impairment after chronic brain injury:progress with the ARM guide. J Rehabil Res Dev 2000, 37:653–662.

    PubMed  CAS  Google Scholar 

  43. Kahn L, Averbuch M, Rymer WZ, Reinkensmeyer DJ: Comparison of robot assisted reaching to free reaching in promoting recovery from chronic stroke. In Integration of Assistive Technology in the Information Age. Edited by Mokhtari M. Amsterdam: IOS Press; 2001:39–44.

    Google Scholar 

  44. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Effect of Robot-Assisted Exercise on Functional Reaching in Chronic Hemiparesis. Presented at 23rd Engineering in Medicine and Biology Society, EMBS-1136, 2001. Turkey.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, B.T., Ferraro, M., Krebs, H.I. et al. Robotics in the rehabilitation treatment of patients with stroke. Curr Atheroscler Rep 4, 270–276 (2002). https://doi.org/10.1007/s11883-002-0005-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-002-0005-7

Keywords

Navigation