Skip to main content

Advertisement

Log in

Critical role of microenvironmental factors in angiogenesis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Therapeutic angiogenesis, which entails the induction of new blood vessels by the delivery of angiogenic growth factors, is a highly attractive approach to the treatment of ischemic diseases. However, it is becoming increasingly clear that this is not easily achieved, as the effects of angiogenic growth factors can differ markedly depending on the timing of their expression, on the shape of the concentration gradients they form in vivo, and the interactions between endothelial cells and pericytes they induce. In fact, the same dose of vascular endothelial growth factor can induce stable, nonleaky, pericyte-covered normal capillaries or aberrant vascular structures that develop into hemangiomas. This difference in outcome can be due solely to the spatial characteristics of the delivery method. If delivery allows a homogeneous spatial distribution of VEGF in the microenvironment around each producing cell, angiogenesis can be therapeutic, whereas if the total dose is the average of diverse spatial levels, aberrant angiogenesis cannot be avoided. To achieve therapeutic angiogenesis, a means of regulating the microenvironmental levels of angiogenic factors will be critical to the generation of effective new treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Blau HM, Banfi A: The well-tempered vessel. Nat Med 2001, 7:532–534.

    Article  PubMed  CAS  Google Scholar 

  2. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3:721–732.

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P: Angiogenesis in health and disease. Nat Med 2003, 9:653–660.

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet P, Ferreira V, Breier G, et al.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996, 380:435–439.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Carver-Moore K, Chen H, et al.: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996, 380:439–442.

    Article  PubMed  CAS  Google Scholar 

  6. Miquerol L, Langille BL, Nagy A: Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000, 127:3941–3946.

    PubMed  CAS  Google Scholar 

  7. Park JE, Keller GA, Ferrara N: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993, 4:1317–1326.

    PubMed  CAS  Google Scholar 

  8. Carmeliet P, Ng YS, Nuyens D, et al.: Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 1999, 5:495–502.

    Article  PubMed  CAS  Google Scholar 

  9. Stalmans I, Ng YS, Rohan R, et al.: Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002, 109:327–336.

    Article  PubMed  CAS  Google Scholar 

  10. Ruhrberg C, Gerhardt H, Golding M, et al.: Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 2002, 16:2684–2698.

    Article  PubMed  CAS  Google Scholar 

  11. Gerhardt H, Golding M, Fruttiger M, et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003, 161:1163–1177.

    Article  PubMed  CAS  Google Scholar 

  12. Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998, 125:1591–1598.

    PubMed  CAS  Google Scholar 

  13. Benjamin LE, Golijanin D, Itin A, et al.: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999, 103:159–165.

    PubMed  CAS  Google Scholar 

  14. Enge M, Bjarnegard M, Gerhardt H, et al.: Endotheliumspecific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 2002, 21:4307–4316.

    Article  PubMed  CAS  Google Scholar 

  15. Hammes HP, Lin J, Renner O, et al.: Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002, 51:3107–3112.

    Article  PubMed  CAS  Google Scholar 

  16. Darland DC, D’Amore PA: Blood vessel maturation: vascular development comes of age. J Clin Invest 1999, 103:157–158.

    Article  PubMed  CAS  Google Scholar 

  17. Nehls V, Denzer K, Drenckhahn D: Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 1992, 270:469–474.

    Article  PubMed  CAS  Google Scholar 

  18. Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003, 314:15–23.

    Article  PubMed  Google Scholar 

  19. Bjarnegard M, Enge M, Norlin J, et al.: Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 2004, 131:1847–1857.

    Article  PubMed  CAS  Google Scholar 

  20. Hellstrom M, Kalen M, Lindahl P, et al.: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999, 126:3047–3055.

    PubMed  CAS  Google Scholar 

  21. Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997, 277:242–245.

    Article  PubMed  CAS  Google Scholar 

  22. Tallquist MD, French WJ, Soriano P: Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 2003, 1:E52.

    Google Scholar 

  23. Lindblom P, Gerhardt H, Liebner S, et al.: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 2003, 17:1835–1840.

    Article  PubMed  CAS  Google Scholar 

  24. Abramsson A, Lindblom P, Betsholtz C: Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003, 112:1142–1151.

    Article  PubMed  CAS  Google Scholar 

  25. Hellstrom M, Gerhardt H, Kalen M, et al.: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001, 153:543–553.

    Article  PubMed  CAS  Google Scholar 

  26. Bergers G, Song S, Meyer-Morse N, et al.: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003, 111:1287–1295.

    Article  PubMed  CAS  Google Scholar 

  27. Koike N, Fukumura D, Gralla O, et al.: Tissue engineering: creation of long-lasting blood vessels. Nature 2004, 428:138–139.

    Article  PubMed  CAS  Google Scholar 

  28. Darland DC, D’Amore PA: TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 2001, 4:11–20.

    Article  PubMed  CAS  Google Scholar 

  29. Korff T, Kimmina S, Martiny-Baron G, Augustin HG: Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 2001, 15:447–457.

    Article  PubMed  CAS  Google Scholar 

  30. Sundberg C, Kowanetz M, Brown LF, et al.: Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 2002, 82:387–401.

    PubMed  CAS  Google Scholar 

  31. Uemura A, Ogawa M, Hirashima M, et al.: Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 2002, 110:1619–1628.

    Article  PubMed  CAS  Google Scholar 

  32. Dor Y, Djonov V, Abramovitch R, et al.: Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 2002, 21:1939–1947.

    Article  PubMed  CAS  Google Scholar 

  33. Darland DC, Massingham LJ, Smith SR, et al.: Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 2003, 264:275–288.

    Article  PubMed  CAS  Google Scholar 

  34. Heissig B, Hattori K, Friedrich M, et al.: Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003, 10:136–141.

    Article  PubMed  CAS  Google Scholar 

  35. Bergers G, Brekken R, McMahon G, et al.: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2:737–744.

    Article  PubMed  CAS  Google Scholar 

  36. Stupack DG, Cheresh DA: ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002, 2002:PE7.

  37. Barleon B, Sozzani S, Zhou D, et al.: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996, 87:3336–3343.

    PubMed  CAS  Google Scholar 

  38. Simons M, Ware JA: Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2003, 2:863–871.

    Article  PubMed  CAS  Google Scholar 

  39. Springer ML, Chen AS, Kraft PE, et al.: VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998, 2:549–558.

    Article  PubMed  CAS  Google Scholar 

  40. Schwarz ER, Speakman MT, Patterson M, et al.: Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J Am Coll Cardiol 2000, 35:1323–1330.

    Article  PubMed  CAS  Google Scholar 

  41. Ozawa CR, Banfi A, Glazer NL, et al.: Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004, 113:516–527.

    Article  PubMed  CAS  Google Scholar 

  42. Ehrbar M, Djonov VG, Schnell G, et al.: Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 2004, 94:1124–1132.

    Article  PubMed  CAS  Google Scholar 

  43. Whitlock PR, Hackett NR, Leopold PL, et al.: Adenovirusmediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF cDNAs. Mol Ther 2004, 9:67–75.

    Article  PubMed  CAS  Google Scholar 

  44. Thurston G, Rudge JS, Ioffe E, et al.: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000, 6:460–463.

    Article  PubMed  CAS  Google Scholar 

  45. Cao R, Brakenhielm E, Pawliuk R, et al.: Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003, 9:604–613.

    Article  PubMed  CAS  Google Scholar 

  46. Richardson TP, Peters MC, Ennett AB, Mooney DJ: Polymeric system for dual growth factor delivery. Nat Biotechnol 2001, 19:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  47. Elson DA, Thurston G, Huang LE, et al.: Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev 2001, 15:2520–2532.

    Article  PubMed  CAS  Google Scholar 

  48. Vincent KA, Shyu KG, Luo Y, et al.: Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 2000, 102:2255–2261.

    PubMed  CAS  Google Scholar 

  49. Li J, Post M, Volk R, et al.: PR39, a peptide regulator of angiogenesis. Nat Med 2000, 6:49–55.

    Article  PubMed  CAS  Google Scholar 

  50. Rebar EJ, Huang Y, Hickey R, et al.: Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002, 8:1427–1432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfi, A., von Degenfeld, G. & Blau, H.M. Critical role of microenvironmental factors in angiogenesis. Curr Atheroscler Rep 7, 227–234 (2005). https://doi.org/10.1007/s11883-005-0011-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-005-0011-7

Keywords

Navigation