Skip to main content

Advertisement

Log in

Gene therapy: Recombinant adeno-associated virus vectors

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Gene transfer using recombinant adeno-associated virus (rAAV) vectors shows great promise for human gene therapy. The broad host range, low level of immune response, and longevity of gene expression observed with these vectors in numerous disease paradigms has enabled the initiation of a number of clinical trials using this gene delivery system. This review presents an overview of the current developments in the field of AAV-mediated gene delivery. Such developments include the establishment of new production methods allowing the generation of high titer preparations, improved purification methods, the use of alternative AAV serotypes, and the generation of trans-splicing rAAV genomes. Together, these developments have improved results interpretation, host range, and the coding capacity of rAAV vectors. Furthermore, the recent identification of regions within the viral capsid that are amenable to modification has begun to address the issue of direct rAAV vector targeting, which could potentially allow targeted gene delivery to specific cell populations. The versatility shown by this vector has enabled new diseases to be realistically considered for therapeutic intervention and considerably broadened the scope of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Berns KI, Pinkerton TC, Thomas GF, et al.: Detection of adenoassociated virus (AAV)-specific nucleotide sequences in DNA isolated from latently infected Detroit 6 cells. Virology 1975, 68:556–560.

    Article  PubMed  CAS  Google Scholar 

  2. Xiao X, Li J, Samulski R: Efficient long term gene transfer into muscle tissue of immunocompetent mice by adenoassociated virus vector. J Virol 1996, 70:8098–8108.

    PubMed  CAS  Google Scholar 

  3. Berns KI, Cheung A, Ostrove J, et al.: Adeno-associated virus latent infection. In Virus Persistence. Edited by BWJ Mahy, Minson AC, Darby GK. Cambridge: Cambridge University Press; 1982:249.

    Google Scholar 

  4. Bartlett JS, Wilcher R, Samulski RJ: Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors, J Virol 2000, 94:2777–2785. Describes the cell entry and translocation process of rAAV and wild-type AAV vectors, highlighting rate-limiting events in the translocation process of AAV particles.

    Article  Google Scholar 

  5. Hernandez YJ, Wang J, Kearns WG, et al.: Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 1999, 73:8549–8558.

    PubMed  CAS  Google Scholar 

  6. Moskalenko M, Chen L, van Roey M, et al.: Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: Implications for gene therapy and virus structure. J Virol 2000, 74:1761–1766.

    Article  PubMed  CAS  Google Scholar 

  7. Li J, Dressman D, Tsao YP, et al.: rAAV vector-mediated sarcoglycan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther 1999, 6:74–82.

    Article  PubMed  CAS  Google Scholar 

  8. Peel AL, Zolotukhin S, Schrimsher GW, et al.: Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther 1997, 4:16–24.

    Article  PubMed  CAS  Google Scholar 

  9. Tenenbaum L, Jurysta F, Stathopoulos A, et al.: Tropism of AAV-2 vectors for neurons of the globus pallidus. Neuroreport 2000, 11:2277–2283.

    Article  PubMed  CAS  Google Scholar 

  10. Mandel RJ, Spratt SK, Snyder RO, et al.: Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci USA 1997, 94:14083–14088.

    Article  PubMed  CAS  Google Scholar 

  11. Shen Y, Muramatsu SI, Ikeguchi K, et al.: Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 2000, 11:1509–1519.

    Article  PubMed  CAS  Google Scholar 

  12. Xiao X, McCown TJ, Li J, et al.: Adeno-associated virus (AAV) vectors antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res 1997, 756:76–83.

    Article  PubMed  CAS  Google Scholar 

  13. Bals R, Xiao W, Sang N, et al.: Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J Virol 1999, 73:6085–6088.

    PubMed  CAS  Google Scholar 

  14. Chiorini JA, Yang L, Liu Y, et al.: Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997, 71:6823–6833.

    PubMed  CAS  Google Scholar 

  15. Xiao W, Chirmule N, Berta SC, et al.: Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999, 73:3994–4003.

    PubMed  CAS  Google Scholar 

  16. Zabner J, Seiler M, Walters R, et al.: Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 2000, 74:3852–3858. The use of AAV5 serotype is shown to be highly successful in the infection of airway epithelium.

    Article  PubMed  CAS  Google Scholar 

  17. Davidson BL, Stein CS, Heth JA, et al.: Recombinant adenoassociated virus type 2, 4 and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 2000, 97:3428–3432. Describes the use of AAV4 and AAV5 serotypes in the central nervous system, results show these serotypes are capable of transducing cells refractory to AAV2 infection.

    Article  PubMed  CAS  Google Scholar 

  18. Halbert CL, Rutledge EA, Allen JM, et al.: Repeat transduction in mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000, 74:1524–1532. Important study on the readministration of rAAV vectors based on different serotypes. Indicates that neutralizing capsid antibodies for different serotypes do not cross-react allowing efficient readministration.

    Article  PubMed  CAS  Google Scholar 

  19. Girod A, Ried M, Wobus C, et al.: Genetic Capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 1999, 5:1052–1056. First study to directly alter rAAV vector tropism to integrin receptors by the introduction of RGD sequences within the VP3 capsid protein.

    Article  PubMed  CAS  Google Scholar 

  20. Wu P, Xiao W, Conlon T, et al.: Mutational analysis of the adenoassociated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000, 74:8635–8647. A comprehensive study to determine regions of the AAV capsid proteins amenable to insertional mutations. Also describes redirected tropism of rAAV2 based vectors to serpin receptor.

    Article  PubMed  CAS  Google Scholar 

  21. Nakai H, Storm TA, Kay MA: Increasing the size of rAAVmediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 2000, 18:527–532. Important study on the ability to increase rAAV vector insert capacity by molecular joining of two separate rAAV genomes.

    Article  PubMed  CAS  Google Scholar 

  22. Srivastava A, Lusby EW, Berns KI: Nucleotide sequence and organization of the adeno-associated virus-2 genome. J Virol 1983, 45:555–564.

    PubMed  CAS  Google Scholar 

  23. Atchison RW, Castro BC, Hammond WM: Adenovirus-associated defective virus particles. Science 1965, 149:754–756.

    Article  PubMed  CAS  Google Scholar 

  24. Schlehofer JR, Ehrbar M, zur Hausen H: Vaccinia virus, Herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 1986, 152:110–117.

    Article  PubMed  CAS  Google Scholar 

  25. Yakinoglu AO, Heilbronn R, Burkle A, et al.: DNA amplification of adeno-associated virus as a response to genotoxic stress. Cancer Res 1988, 48:3123–3129.

    Google Scholar 

  26. Yakobson B, Koch T, Winocour E: Replication of adenoassociated virus in synchronized cells without the addition of helper virus. J Virol 1987, 61:972–981.

    PubMed  CAS  Google Scholar 

  27. Burns KI: Parvoviridae: The viruses and their replication, In Fundamental Virology, edn 3. Edited by Fields BN, Knipe PM, Howley, et al.. New York: Raven Press; 1996:1017.

    Google Scholar 

  28. Samulski RJ, Zhu X, Xiao X, et al.: Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991, 10:3941–3950.

    PubMed  CAS  Google Scholar 

  29. Ashktorab H, Srivastava A: Identification of nuclear proteins that specifically interact with the adeno-associated virus type 2 inverted terminal repeat hairpin DNA. J Virol 1989, 63:3034–3039.

    PubMed  CAS  Google Scholar 

  30. Im D-S, Muzyczka N: The AAV origin binding protein Rep68 is an ATP-dependant site specific endonuclease with DNA helicase activity. Cell 1990, 61:447–457.

    Article  PubMed  CAS  Google Scholar 

  31. Young SM, McCarthy DM, Degtyareva N, et al.: Roles of adenoassociated virus Rep protein and human chromosome 19 in site specific recombination. J Virol 2000, 74:3953–3966.

    Article  PubMed  CAS  Google Scholar 

  32. Wu P, Phillips MI, Bui J, et al.: Adeno-associated virus vectormediated transgene integration into neurons and other nondividing cell targets. J Virol 1998, 72:5919–5926.

    PubMed  CAS  Google Scholar 

  33. Xiao X, Li J, Samulski RJ: Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998, 72:2224–2232. Describes the efficient method for rAAV production in the absence of helper virus, using a unique three plasmid transfection system.

    PubMed  CAS  Google Scholar 

  34. Gao GP, Qu G, Faust LZ, et al.: High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther 1998, 9:2353–2362.

    PubMed  CAS  Google Scholar 

  35. Conway JE, Rhys CM, Zolotukhin I, et al.: High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther 1999, 6:986–993.

    Article  PubMed  CAS  Google Scholar 

  36. Clark KR, Voulgaropoulou F, Fraley DM, et al.: Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 1995, 6:1329–1341.

    PubMed  CAS  Google Scholar 

  37. Anderson R, Macdonald I, Corbett T, et al.: A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction. J Virol Methods 2000, 85:23–34.

    Article  PubMed  CAS  Google Scholar 

  38. Summerford C, Samulski RJ: Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998, 72:1438–1445.

    PubMed  CAS  Google Scholar 

  39. Qing K, Mah C, Hansen J, et al.: Human fibroblast growth factor receptor I is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999, 5:71–77.

    Article  PubMed  CAS  Google Scholar 

  40. Summerford C, Bartlett JS, Samulski JR: aVb5 integrin: co-receptor for adeno-associated virus type 2 infection. Nat Med 1999, 5:78–82.

    Article  PubMed  CAS  Google Scholar 

  41. Duan D, Yue Y, Yan Z, et al.: Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000, 105:1573–1587.

    Article  PubMed  CAS  Google Scholar 

  42. Hansen J, Qing K, Kwon HJ, et al.: Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000, 74:992–996.

    Article  PubMed  CAS  Google Scholar 

  43. Ferrari FK, Samulski T, Shenk T, et al.: Second-strand synthesis is a rate limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996, 70:3227–3234.

    PubMed  CAS  Google Scholar 

  44. Kessler PD, Podsakoff GM, Chen X, et al.: Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996, 93:14082–14087.

    Article  PubMed  CAS  Google Scholar 

  45. Bartlett JS, Samulski RJ, McCown TJ: Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 1998, 9:1181–1186.

    PubMed  CAS  Google Scholar 

  46. Clark KR, Sferra TJ, Lo W, et al.: Gene transfer into the CNS using recombinant adeno-associated virus: analysis of vector DNA forms resulting in sustained expression. J Drug Target 1999, 7:269–283.

    Article  PubMed  CAS  Google Scholar 

  47. Qing K, Wang X-S, Kube DM, et al.: Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2- mediated transgene expression. Proc Natl Acad Sci USA 1997, 94:10879–10884.

    Article  PubMed  CAS  Google Scholar 

  48. Qing K, Khuntirat B, Mah C, et al.: Adeno-associated virus type 2-mediated gene transfer: Correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and in murine tissues in vivo. J Virol 1998, 72:1593–1599.

    PubMed  CAS  Google Scholar 

  49. Mah C, Qing K, Khuntirat B, et al.: Adeno-associated virus type 2-mediated gene transfer: Role of epidermal growth factor receptor protein tyrosine kinase in transgene expression. J Virol 1998, 72:9835–9843.

    PubMed  CAS  Google Scholar 

  50. Fisher KJ, Alston J, Yang Y, et al.: Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997, 3:306–312.

    Article  PubMed  CAS  Google Scholar 

  51. Jooss K, Yang Y, Fisher KJ, et al.: Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998, 72:4212–4223.

    PubMed  CAS  Google Scholar 

  52. Brockstedt DG, Podsakoff GM, Fong L, et al.: Induction of immunity to antigens expressed by recombinant adenoassociated virus depends upon route of administration. Clin Immunol 1999, 92:67–75.

    Article  PubMed  CAS  Google Scholar 

  53. Xiao X, Li J, Tsao YP, et al.: Full functional rescue of a complete (TA) in dystrophic hamsters by adeno-associated virus vectordirected gene therapy. J Virol 2000, 74:1436–1442.

    Article  PubMed  CAS  Google Scholar 

  54. Herzog RW, Hagstrom JN, Kung S-H, et al.: Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997, 94:5804–5809.

    Article  PubMed  CAS  Google Scholar 

  55. Chao H, Samulski R, Bellinger D, et al.: Persistent expression of canine factor IX in hemophilia B canines. Gene Ther 1999, 6:1695–1704.

    Article  PubMed  CAS  Google Scholar 

  56. Kay M, Manno CS, Ragni MV, et al.: Evidence for gene transfer and expression of factor IX in haemaphilia B patients treated with an AAV vector. Nat Genet 2000, 24:257–261. Clinical trail using rAAV based vectors to express human factor IX in adults with severe hemaphilia B. Initial results indicate that therapeutic levels of factor IX could be achieved with the vector doses used.

    Article  PubMed  CAS  Google Scholar 

  57. Lynch CM, Hara PS, Leonard JC, et al.: Adeno-associated virus vectors for vascular gene delivery. Circ Res 1997, 80:497–505.

    PubMed  CAS  Google Scholar 

  58. Gnatenko D, Arnold TE, Zohlotukhin S, et al.: Characterization of recombinant adeno-associated virus-2 as a vehicle for gene delivery and expression into vascular cells, J Investig Med 1997, 45:87–98.

    PubMed  CAS  Google Scholar 

  59. Kaplitt MG, Xiao X, Samulski RJ, et al.: Long-term gene transfer in porcine myocardium after coronary infusion of an adenoassociated virus vector. Ann Thorac Surg 1996, 62:1669–1676.

    Article  PubMed  CAS  Google Scholar 

  60. Mohuczy D, Gelband CH, Phillips MI: Antisense inhibition of AT1 receptor in vascular smooth muscle cells using adeno-associated virus-based vectors. Hypertension 1999, 33:354–359.

    PubMed  CAS  Google Scholar 

  61. Yan Z, Zhang Y, Duan D, et al.: Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA 2000, 97:6716–6721.

    Article  PubMed  CAS  Google Scholar 

  62. Haberman RP, McCown TJ, Samulski RJ: Novel transcriptional regulatory signals in the adeno-associated virus repeat A/D junction element. J Virol 2000, 74:8732–8739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith-Arica, J.R., Bartlett, J.S. Gene therapy: Recombinant adeno-associated virus vectors. Curr Cardiol Rep 3, 43–49 (2001). https://doi.org/10.1007/s11886-001-0009-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-001-0009-x

Keywords

Navigation