Skip to main content

Advertisement

Log in

Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin?

  • Therapeutic Trials (M Weir, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Anemia of chronic kidney disease (CKD) is common and is associated with diminished quality of life, cognitive impairment, cardiovascular morbidity, hospitalizations, and mortality. As the prevalence of end-stage renal disease continues to rise, the management of anemia represents a growing economic burden. Erythropoiesis-stimulating agents (ESA) are the mainstay of anemia management but their use is limited due to the associated cardiovascular adverse events. Prolyl hydroxylase domain enzyme (PHD) inhibitors are a new class of drugs that stabilize the hypoxia-inducible factors and are under clinical investigation for the treatment of renal anemia. The advantages of PHD inhibitors include the oral route of administration, improved iron profile, restoration of diurnal rhythm of erythropoietin secretion, and endogenous erythropoietin production near physiological range. Emerging but limited data indicates a small blood pressure lowering effect of PHD inhibitors. The effect of PHD inhibitors on cardiovascular endpoints and the potential risks of CKD progression and pulmonary hypertension remains to be addressed in the ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stivelman JC. Benefits of anaemia treatment on cognitive function. Nephrol Dial Transplant. 2000;15 Suppl 3:29–35.

    Article  PubMed  Google Scholar 

  3. Portolés J, López-Gómez JM, Aljama P. A prospective multicentre study of the role of anaemia as a risk factor in haemodialysis patients: the MAR Study. Nephrol Dial Transplant. 2007;22(2):500–7.

    Article  PubMed  Google Scholar 

  4. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999 Mar;10(3):610–9.

  5. Karaboyas A, Zee J, Morgenstern H, Nolen JG, Hakim R, Kalantar-Zadeh K, et al. Understanding the recent increase in ferritin levels in United States dialysis patients: potential impact of changes in intravenous iron and erythropoiesis-stimulating agent dosing. Clin J Am Soc Nephrol. 2015;10(10):1814–21.

    Article  PubMed  Google Scholar 

  6. Revicki DA, Brown RE, Feeny DH, Henry D, Teehan BP, Rudnick MR, et al. Health-related quality of life associated with recombinant human erythropoietin therapy for predialysis chronic renal disease patients. Am J Kidney Dis. 1995;25(4):548–54.

    Article  CAS  PubMed  Google Scholar 

  7. United States Renal Data System, USRDS. 2012 Annual Data Report: atlas of chronic kidney and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

    Google Scholar 

  8. McCullough PA, Barnhart HX, Inrig JK, Reddan D, Sapp S, Patel UD, et al. Cardiovascular toxicity of epoetin-alfa in patients with chronic kidney disease. Am J Nephrol. 2013;37(6):549–58.

    Article  CAS  PubMed  Google Scholar 

  9. Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. BMJ. 1990;300(6724):573–8.

    Article  Google Scholar 

  10. Clyne N, Jogestrand T. Effect of erythropoietin treatment on physical exercise capacity and on renal function in predialytic uremic patients. Nephron. 1992;60(4):390–6.

    Article  CAS  PubMed  Google Scholar 

  11. Abraham PA, Opsahl JA, Keshaviah PR, Collins AJ, Whalen JJ, Asinger RW, et al. Body fluid spaces and blood pressure in hemodialysis patients during amelioration of anemia with erythropoietin. Am J Kidney Dis. 1990;16(5):438–46.

    Article  CAS  PubMed  Google Scholar 

  12. Bahlmann J, Schöter KH, Scigalla P, Gurland HJ, Hilfenhaus M, Koch KM, et al. Morbidity and mortality in hemodialysis patients with and without erythropoietin treatment: a controlled study. Contrib Nephrol. 1991;88:90–106.

    Article  CAS  PubMed  Google Scholar 

  13. Teehan BP, Benz RL, Sigler MH, Brown JM. Early intervention with recombinant human erythropoietin therapy. Semin Nephrol. 1990;10(2 Suppl 1):28–34.

    CAS  PubMed  Google Scholar 

  14. Bommer J, Müller-Bühl E, Ritz E, Eifert J. Recombinant human erythropoietin in anaemic patients on haemodialysis. Lancet. 1987;1(8529):392.

    Article  CAS  PubMed  Google Scholar 

  15. Bommer J, Alexiou C, Müller-Bühl U, Eifert J, Ritz E. Recombinant human erythropoietin therapy in haemodialysis patients—dose determination and clinical experience. Nephrol Dial Transplant. 1987;2(4):238–42.

    CAS  PubMed  Google Scholar 

  16. Casati S, Passerini P, Campise MR, Graziani G, Cesana B, Perisic M, et al. Benefits and risks of protracted treatment with human recombinant erythropoietin in patients having haemodialysis. Br Med J (Clin Res Ed). 1987;295(6605):1017–20.

    Article  CAS  Google Scholar 

  17. Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med. 1989;111(12):992–1000.

    Article  CAS  PubMed  Google Scholar 

  18. Sundal E, Kaeser U. Correction of anaemia of chronic renal failure with recombinant human erythropoietin: safety and efficacy of one year’s treatment in a European multicentre study of 150 haemodialysis-dependent patients. Nephrol Dial Transplant. 1989;4(11):979–87.

    CAS  PubMed  Google Scholar 

  19. Samtleben W, Baldamus CA, Bommer J, Fassbinder W, Nonnast-Daniel B, Gurland HJ. Blood pressure changes during treatment with recombinant human erythropoietin. Contrib Nephrol. 1988;66:114–22.

    Article  CAS  PubMed  Google Scholar 

  20. Pollok M, Bommer J, Gurland HJ, Koch KM, Schoeppe W, Scigalla P, et al. Effects of recombinant human erythropoietin treatment in end-stage renal failure patients. Results of a multicenter phase II/III study. Contrib Nephrol. 1989;76:201–11. discussion 212-8.

    Article  CAS  PubMed  Google Scholar 

  21. Nonnast-Daniel B, Deschodt G, Brunkhorst R, Creutzig A, Bahlmann J, Shaldon S, et al. Long-term effects of treatment with recombinant human erythropoietin on haemodynamics and tissue oxygenation in patients with renal anaemia. Nephrol Dial Transplant. 1990;5(6):444–8.

    Article  CAS  PubMed  Google Scholar 

  22. Akizawa T, Koshikawa S, Takaku F, Urabe A, Akiyama N, Mimura N, et al. Clinical effect of recombinant human erythropoietin on anemia associated with chronic renal failure. A multi-institutional study in Japan. Int J Artif Organs. 1988;11(5):343–50.

    CAS  PubMed  Google Scholar 

  23. Baskin S, Lasker N. Erythropoietin-associated hypertension. N Engl J Med. 1990;323(14):999–1000.

    Article  CAS  PubMed  Google Scholar 

  24. Schaefer RM, Leschke M, Strauer BE, Heidland A. Blood rheology and hypertension in hemodialysis patients treated with erythropoietin. Am J Nephrol. 1988;8(6):449–53.

    Article  CAS  PubMed  Google Scholar 

  25. Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol. 2004;15(12):3154–65.

    Article  PubMed  Google Scholar 

  26. Phrommintikul A, Haas SJ, Elsik M, Krum H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet. 2007;369(9559):381–8.

    Article  CAS  PubMed  Google Scholar 

  27. Krapf R, Hulter HN. Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA). Clin J Am Soc Nephrol. 2009;4(2):470–80.

    Article  CAS  PubMed  Google Scholar 

  28. Cody J, Daly C, Campbell M, Donaldson C, Khan I, Vale L, et al. Frequency of administration of recombinant human erythropoietin for anaemia of end-stage renal disease in dialysis patients. Cochrane Database Syst Rev. 2005;3, CD003895.

    PubMed  Google Scholar 

  29. Palmer SC, Saglimbene V, Mavridis D, Salanti G, Craig JC, Tonelli M, et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev. 2014;12, CD010590.

    PubMed  Google Scholar 

  30. Annuk M, Linde T, Lind L, Fellström B. Erythropoietin impairs endothelial vasodilatory function in patients with renal anemia and in healthy subjects. Nephron Clin Pract. 2006;102(1):c30–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kaupke CJ, Kim S, Vaziri ND. Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance erythropoietin therapy. J Am Soc Nephrol. 1994;4(11):1874–8.

    CAS  PubMed  Google Scholar 

  32. Kumar H, Choi DK. Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway? Mediat Inflamm. 2015;2015:584758.

    Article  Google Scholar 

  33. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N. Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun. 2001;287(4):808–13.

    Article  CAS  PubMed  Google Scholar 

  35. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.

    Article  CAS  PubMed  Google Scholar 

  36. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  PubMed  Google Scholar 

  37. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  CAS  PubMed  Google Scholar 

  38. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16(12):1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002;277(29):26351–5.

    Article  CAS  PubMed  Google Scholar 

  40. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295(5556):858–61.

    Article  CAS  PubMed  Google Scholar 

  41. Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31(11):2448–60. Summarizes the regulation of HIF and relevant biological processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, et al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep. 2014;15(1):70–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schödel J, Mole DR, Ratcliffe PJ. Pan-genomic binding of hypoxia-inducible transcription factors. Biol Chem. 2013;394(4):507–17. Reviews HIF binding sites that have been identified.

    Article  PubMed  CAS  Google Scholar 

  44. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A. 2007;104(7):2301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scortegagna M, Ding K, Zhang Q, Oktay Y, Bennett MJ, Bennett M, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood. 2005;105(8):3133–40.

    Article  CAS  PubMed  Google Scholar 

  46. Paliege A, Rosenberger C, Bondke A, Sciesielski L, Shina A, Heyman SN, et al. Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int. 2010;77(4):312–8.

    Article  CAS  PubMed  Google Scholar 

  47. Furlow PW, Percy MJ, Sutherland S, Bierl C, McMullin MF, Master SR, et al. Erythrocytosis-associated HIF-2alpha mutations demonstrate a critical role for residues C-terminal to the hydroxylacceptor proline. J Biol Chem. 2009;284(14):9050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martini M, Teofili L, Cenci T, Giona F, Torti L, Rea M, et al. A novel heterozygous HIF2AM535I mutation reinforces the role of oxygen sensing pathway disturbances in the pathogenesis of familial erythrocytosis. Haematologica. 2008;93(7):1068–71.

    Article  CAS  PubMed  Google Scholar 

  49. Simpson RJ, McKie AT. Iron and oxygen sensing: a tale of 2 interacting elements? Metallomics. 2015;7(2):223–31.

    Article  PubMed  Google Scholar 

  50. van Wijk R, Sutherland S, Van Wesel AC, Huizinga EG, Percy MJ, Bierings M, et al. Erythrocytosis associated with a novel missense mutation in the HIF2A gene. Haematologica. 2010;95(5):829–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101(12):1310–8.

    Article  CAS  PubMed  Google Scholar 

  52. Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol. 2011;300(3):C385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003;22(16):4082–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–65.

    Article  CAS  PubMed  Google Scholar 

  55. Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K, Duan LJ, et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood. 2008;111(6):3229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laitala A, Aro E, Walkinshaw G, Mäki JM, Rossi M, Heikkilä M, et al. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. Blood. 2012;120(16):3336–44.

    Article  CAS  PubMed  Google Scholar 

  57. Minamishima YA, Kaelin Jr WG. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science. 2010;329(5990):407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bishop T, Gallagher D, Pascual A, Lygate CA, de Bono JP, Nicholls LG, et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol. 2008;28(10):3386–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sato Y, Yanagita M. Renal anemia: from incurable to curable. Am J Physiol Renal Physiol. 2013;305(9):F1239–48.

    Article  CAS  PubMed  Google Scholar 

  60. Nagai T, Yasuoka Y, Izumi Y, Horikawa K, Kimura M, Nakayama Y, et al. Reevaluation of erythropoietin production by the nephron. Biochem Biophys Res Commun. 2014;449(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  61. Gerl K, Miquerol L, Todorov VT, Hugo CP, Adams RH, Kurtz A, et al. Inducible glomerular erythropoietin production in the adult kidney. Kidney Int. 2015;88(6):1345–55. Describes other renal cells that can be induced to express EPO.

    Article  CAS  PubMed  Google Scholar 

  62. Kurt B, Paliege A, Willam C, Schwarzensteiner I, Schucht K, Neymeyer H, et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J Am Soc Nephrol. 2013;24(3):433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kurt B, Gerl K, Karger C, Schwarzensteiner I, Kurtz A. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. J Am Soc Nephrol. 2015;26(3):587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Plotkin MD, Goligorsky MS. Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Physiol Renal Physiol. 2006;291(4):F902–12.

    Article  CAS  PubMed  Google Scholar 

  65. Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest. 2007;117(4):1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, et al. Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia. 2000;30(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  67. Weidemann A, Kerdiles YM, Knaup KX, Rafie CA, Boutin AT, Stockmann C, et al. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Invest. 2009;119(11):3373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149(1):63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig. 2011;91(11):1564–71.

    Article  CAS  PubMed  Google Scholar 

  70. Pasqualetti P, Casale R. Circadian rhythm of serum erythropoietin in healthy subjects. Riv Eur Sci Med Farmacol. 1996;18(3):91–3.

    CAS  PubMed  Google Scholar 

  71. Egg M, Köblitz L, Hirayama J, Schwerte T, Folterbauer C, Kurz A, et al. Linking oxygen to time: the bidirectional interaction between the hypoxic signaling pathway and the circadian clock. Chronobiol Int. 2013;30(4):510–29.

    Article  CAS  PubMed  Google Scholar 

  72. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72(2):449–89.

    CAS  PubMed  Google Scholar 

  73. Brines M. The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors. Blood Purif. 2010;29(2):86–92. Reviews the two types of EPO receptors and their implications.

    Article  CAS  PubMed  Google Scholar 

  74. Garimella PS, Katz R, Patel KV, Kritchevsky SB, Parikh CR, Ix JH, et al. Association of serum erythropoietin with cardiovascular events, kidney function decline, and mortality: the Health Aging and Body Composition Study. Circ Heart Fail. 2016;9(1):e002124.

    Article  PubMed  Google Scholar 

  75. Kanbay M, Perazella MA, Kasapoglu B, Koroglu M, Covic A. Erythropoiesis stimulatory agent- resistant anemia in dialysis patients: review of causes and management. Blood Purif. 2010;29(1):1–12.

    Article  PubMed  Google Scholar 

  76. Johnson DW, Pollock CA, Macdougall IC. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology (Carlton). 2007;12(4):321–30.

    Article  CAS  Google Scholar 

  77. Ganz T. Hepcidin and the global burden of iron deficiency. Clin Chem. 2015;61(4):577–8.

    Article  CAS  PubMed  Google Scholar 

  78. Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009;122(2-3):78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41. Summarizes the regulation of iron and the elements involved.

    Article  CAS  PubMed  Google Scholar 

  80. Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. 2015;35(3). pii: e00192.

  81. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Camaschella C. Iron and hepcidin: a story of recycling and balance. Hematol Am Soc Hematol Educ Program. 2013;2013:1–8.

    Article  Google Scholar 

  83. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Volke M, Gale DP, Maegdefrau U, Schley G, Klanke B, Bosserhoff AK, et al. Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors. PLoS One. 2009;4(11):e7875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mastrogiannaki M, Matak P, Mathieu JR, Delga S, Mayeux P, Vaulont S, et al. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica. 2012;97(6):827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Anderson ER, Xue X, Shah YM. Intestinal hypoxia-inducible factor-2alpha (HIF-2alpha) is critical for efficient erythropoiesis. J Biol Chem. 2011;286(22):19533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology. 2011;140(7):2044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mastrogiannaki M, Matak P, Delga S, Deschemin JC, Vaulont S, Peyssonnaux C. Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. Blood. 2012;119(2):587–90.

    Article  CAS  PubMed  Google Scholar 

  89. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009;9(2):152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rolfs A, Kvietikova I, Gassmann M, Wenger RH. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem. 1997;272(32):20055–62.

    Article  CAS  PubMed  Google Scholar 

  92. Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 1999;274(34):24142–6.

    Article  CAS  PubMed  Google Scholar 

  93. Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 2000;275(28):21048–54.

    Article  CAS  PubMed  Google Scholar 

  94. Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008;111(2):924–31.

    Article  CAS  PubMed  Google Scholar 

  95. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272(9):5375–81.

    Article  CAS  PubMed  Google Scholar 

  96. Mathieu JR, Heinis M, Zumerle S, Delga S, Le Bon A, Peyssonnaux C. Investigating the real role of HIF-1 and HIF-2 in iron recycling by macrophages. Haematologica. 2014;99(7):e112–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int. 2009;75(9):976–81.

    Article  CAS  PubMed  Google Scholar 

  98. Kitsati N, Liakos D, Ermeidi E, Mantzaris MD, Vasakos S, Kyratzopoulou E, et al. Rapid elevation of transferrin saturation and serum hepcidin concentration in hemodialysis patients after intravenous iron infusion. Haematologica. 2015;100(3):e80–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kuragano T, Itoh K, Shimonaka Y, Kida A, Furuta M, Kitamura R, et al. Hepcidin as well as TNF-α are significant predictors of arterial stiffness in patients on maintenance hemodialysis. Nephrol Dial Transplant. 2011;26(8):2663–7.

    Article  CAS  PubMed  Google Scholar 

  100. Kali A, Yayar O, Erdogan B, Eser B, Buyukbakkal M, Ercan Z, Merhametsiz O, Haspulat A, Gök Oğuz E, Canbakan B, Ayli MD. Is hepcidin-25 a predictor of atherosclerosis in hemodialysis patients? Hemodial Int. 2015. doi:10.1111/hdi.12355.

  101. van der Weerd NC, Grooteman MP, Bots ML, van den Dorpel MA, den Hoedt CH, Mazairac AH, et al. Hepcidin-25 is related to cardiovascular events in chronic haemodialysis patients. Nephrol Dial Transplant. 2013;28(12):3062–71.

    Article  PubMed  CAS  Google Scholar 

  102. Suárez-Ortegón MF, Arbeláez A, Mosquera M, Moreno-Navarrete JM, Aguilar-Plata C, Fernández-Real JM. Circulating hepcidin is independently associated with systolic blood pressure in apparently healthy individuals. Arch Med Res. 2015;46(6):507–13.

    Article  PubMed  CAS  Google Scholar 

  103. Galesloot TE, Holewijn S, Kiemeney LA, de Graaf J, Vermeulen SH, Swinkels DW. Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler Thromb Vasc Biol. 2014;34(2):446–56.

    Article  CAS  PubMed  Google Scholar 

  104. Valenti L, Maloberti A, Signorini S, Milano M, Cesana F, Cappellini F, et al. Iron stores, hepcidin, and aortic stiffness in individuals with hypertension. PLoS One. 2015;10(8), e0134635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F, et al. Endothelial hypoxia-inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension. 2015;66(6):1220–6.

    CAS  PubMed  Google Scholar 

  106. Wagner M, Ashby DR, Kurtz C, Alam A, Busbridge M, Raff U, et al. Hepcidin-25 in diabetic chronic kidney disease is predictive for mortality and progression to end stage renal disease. PLoS One. 2015;10(4), e0123072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82. Discusses the role of VEGF in tumor biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miller JW, Le Couter J, Strauss EC, Ferrara N. Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology. 2013;120(1):106–14.

    Article  PubMed  Google Scholar 

  110. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23(8):2176–88.

    Article  CAS  PubMed  Google Scholar 

  111. Sui X, Wei H, Wang D. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction. J Cell Mol Med. 2015;19(8):1773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Yang Y, et al. Hypoxia-inducible factor-1alpha in hepatic fibrosis: a promising therapeutic target. Biochimie. 2015;108:1–7.

    Article  CAS  PubMed  Google Scholar 

  113. Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, et al. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol. 2014;306(10):F1236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest. 2014;124(6):2396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang S, Ma K, Liu Y, Pan X, Chen Q, Qi L, Li S. Stabilization of Hypoxia Inducible Factor by DMOG Inhibits Development of Chronic Hypoxia-Induced Right Ventricular Remodeling. J Cardiovasc Pharmacol. 2015.

  116. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol. 2005;46(11):2116–24.

    Article  CAS  PubMed  Google Scholar 

  117. Lokmic Z, Musyoka J, Hewitson TD, Darby IA. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012;296:139–85.

    Article  CAS  PubMed  Google Scholar 

  118. Shao J, Zhang Y, Yang T, Qi J, Zhang L, Deng L. HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression. In Vitro Cell Dev Biol Anim. 2015;51(8):808–14.

    Article  CAS  PubMed  Google Scholar 

  119. Wu C, Rankin EB, Castellini L, Alcudia JF, LaGory EL, Andersen R, et al. Corrigendum: oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 2015;29(11):1202.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Knowles HJ, Cleton-Jansen AM, Korsching E, Athanasou NA. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J. 2010;24(12):4648–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shirakura M, Tanimoto K, Eguchi H, Miyauchi M, Nakamura H, Hiyama K, et al. Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis. Biochem Biophys Res Commun. 2010;393(4):800–5.

    Article  CAS  PubMed  Google Scholar 

  122. Miyauchi Y, Sato Y, Kobayashi T, Yoshida S, Mori T, Kanagawa H, et al. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci U S A. 2013;110(41):16568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Formenti F, Beer PA, Croft QP, Dorrington KL, Gale DP, Lappin TR, et al. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel–Lindau disease and HIF-2alpha gain-of-function mutation. FASEB J. 2011;25(6):2001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103(5):691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Galié N, Manes A, Branzi A. The endothelin system in pulmonary arterial hypertension. Cardiovasc Res. 2004;61(2):227–37.

    Article  PubMed  CAS  Google Scholar 

  127. Li H, Chen SJ, Chen YF, Meng QC, Durand J, Oparil S, et al. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J Appl Physiol (1985). 1994;77(3):1451–9.

    CAS  Google Scholar 

  128. Shimoda LA, Sham JS, Liu Q, Sylvester JT. Acute and chronic hypoxic pulmonary vasoconstriction: a central role for endothelin-1? Respir Physiol Neurobiol. 2002;132(1):93–106.

    Article  CAS  PubMed  Google Scholar 

  129. Li M, Liu Y, Jin F, Sun X, Li Z, Liu Y, et al. Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells. FEBS Lett. 2012;586(21):3888–93.

    Article  CAS  PubMed  Google Scholar 

  130. Pisarcik S, Maylor J, Lu W, Yun X, Undem C, Sylvester JT, et al. Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1. Am J Physiol Lung Cell Mol Physiol. 2013;304(8):L549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gale DP, Harten SK, Reid CD, Tuddenham EG, Maxwell PH. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF2 alpha mutation. Blood. 2008;112(3):919–21.

    Article  CAS  PubMed  Google Scholar 

  132. Tan Q, Kerestes H, Percy MJ, Pietrofesa R, Chen L, Khurana TS, et al. Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mutation. J Biol Chem. 2013;288(24):17134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bushuev VI, Miasnikova GY, Sergueeva AI, Polyakova LA, Okhotin D, Gaskin PR, et al. Endothelin-1, vascular endothelial growth factor and systolic pulmonary artery pressure in patients with Chuvash polycythemia. Haematologica. 2006;91(6):744–9.

    CAS  PubMed  Google Scholar 

  134. Hickey MM, Richardson T, Wang T, Mosqueira M, Arguiri E, Yu H, et al. The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest. 2010;120(3):827–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shimoda LA, Laurie SS. HIF and pulmonary vascular responses to hypoxia. J Appl Physiol (1985). 2014;116(7):867–74.

    Article  CAS  Google Scholar 

  136. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.

    Article  CAS  PubMed  Google Scholar 

  137. Garcia-Morales LJ, Chen NY, Weng T, Luo F, Davies J, Philip K, Volcik KA, Melicoff E, Amione-Guerra J, Bunge RR, Bruckner BA, Loebe M, Eltzschig HK, Pandit LM, Blackburn MR, Karmouty-Quintana H. Altered hypoxic-adenosine axis and metabolism in group III pulmonary hypertension. Am J Respir Cell Mol Biol. 2015 (in press).

  138. Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Günzler V, et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol. 2010;21(12):2151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Besarab A, Provenzano R, Fishbane S, Sun CH, Belo DS, Neff TB, et al. FG-4592 oral hypoxia-inducible factor prolyl hydroxylase inhibitor corrects anemia in nondialysis CKD patients without IV iron [abstract]. J Am Soc Nephrol. 2011;22:196A.

    Google Scholar 

  141. Besarab A, Chernyavskaya E, Motylev I, Shutov E, Kumbar LM, Gurevich K, Chan DT, Leong R, Poole L, Zhong M, Saikali KG, Franco M, Hemmerich S, Yu KP, Neff TB. Roxadustat (FG-4592): Correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2015 (in press).

  142. Szczech L, Besarab A, Saikali KG, Hemmerich A, Roberts BK, Poole L, et al. Anemia correction with roxadustat lowers hepcidin in chronic kidney disease (CKD) patients [abstract]. J Am Soc Nephrol. 2015;26:237A.

    Article  CAS  Google Scholar 

  143. Besarab A, Szczech L, Yu KHP, Neff TB. Impact of iron regimen on iron indices and hepcidin during roxadustat anemia correction in incident dialysis patients [abstract]. J Am Soc Nephrol. 2014;25:304A.

    Google Scholar 

  144. Szczech L, Besarab A, Saikali KG, Hemmerich S, Roberts BK, Poole L, et al. Anemia correction with roxadustat increases soluble transferrin receptor (sTfR) in chronic kidney disease (CKD) patients [abstract]. J Am Soc Nephrol. 2015;26:237A.

    Article  CAS  Google Scholar 

  145. Szczech L, Besarab A, Saikali KG, Hemmerich S, Roberts BK, Poole L, et al. Anemia correction with roxadustat lowers cholesterol in chronic kidney disease (CKD) patients [abstract]. J Am Soc Nephrol. 2015;26:237A.

    Article  CAS  Google Scholar 

  146. Szczech L, Hemmerich S, Besarab A, Saikali KG, Poole L, Yu KHP, et al. Anemia correction with roxadustat improves health related quality of life (HRQOL) in chronic kidney disease (CKD) patients [abstract]. J Am Soc Nephrol. 2015;26:11A.

    Article  CAS  Google Scholar 

  147. Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D, Rastogi A, et al. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol. 2015;22.

  148. Hartman CS, Smith MT, Flinn C, Shalwitz I, Peters KG, Shalwitz RA, et al. AKB-6548, a new hypoxia-inducible factor prolyl hydroxylase inhibitor increases hemoglobin while decreasing ferritin in a 28-day, phase 2a dose escalation study in stage 3 and 4 chronic kidney disease patients with anemia[abstract]. Poster session presented at: Kidney Week 2011. Philadelphia: American Society of Nephrology; 2011.

  149. Hartman CS, Shalwitz I, Shalwitz RA. Controlled hemoglobin response in a double-blind, placebo-controlled trial of AKB-6548 in subjects with chronic kidney disease [abstract]. Oral session presented at: 51st ERA-EDTA Congress. European Renal Association—European Dialysis and Transplant Association; 2014 May 31-Jun 3; Amsterdam, The Netherlands. PowerPoint slides retrieved from: [http://akebia.com/media/publications/]. Accessed 2015 Nov 25.

  150. Haase VH, Spinowitz BS, Pergola PE, Farmer T, Maroni BJ, Hartman CS. AKB-6548 demonstrates controlled hemoglobin (HGB) response in a phase 2b study for the treatment of anemia in patients with chronic kidney disease not on dialysis (ND-CKD) [abstract]. J Am Soc Nephrol. 2015;26:237A.

    Article  Google Scholar 

  151. Buch A, Maroni BJ, Hartman CS. Dose exposure relationship of vadadustat is independent of the level of renal function [abstract]. Poster session presented at: Kidney Week 2015. San Diego: American Society of Nephrology; 2015.

    Google Scholar 

  152. Haase VH, Hartman CS, Maroni BJ, Farzaneh-Far R, McCullough PA. Vadadustat, a novel oral treatment for anemia of chronic kidney disease, maintains stable hemoglobin levels in dialysis patients converting from erythropoiesis-stimulating agents [abstract]. Poster session presented at: Kidney Week 2015. San Diego: American Society of Nephrology; 2015.

    Google Scholar 

  153. Shalwitz RA. AKB-6548, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor reduces hepcidin and ferritin while it increases reticulocyte production and total iron binding capacity in healthy adults [abstract]. Poster session presented at: Kidney Week 2011. Philadelphia: American Society of Nephrology; 2011.

    Google Scholar 

  154. Flamme I, Oehme F, Ellinghaus P, Jeske M, Keldenich J, Thuss U. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One. 2014;9(11), e111838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Boettcher MF, Lentini S, Kaiser A, Flamme I, Kubitza D, Wensing G. First-in-man study with BAY 85-3934—a new oral selective HIF-PH inhibitor for the treatment of renal anemia [abstract]. J Am Soc Nephrol. 2013;24:347A.

    Google Scholar 

  156. Yoon D, Okhotin DV, Kim B, Okhotina Y, Okhotin DJ, Miasnikova GY, et al. Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1alpha and HIF-2alpha. J Mol Med (Berl). 2010;88(5):523–30.

    Article  CAS  Google Scholar 

  157. Hermann M, Flammer A, Lüscher TF. Nitric oxide in hypertension. J Clin Hypertens (Greenwich). 2006;8(12 Suppl 4):17–29.

    Article  CAS  Google Scholar 

  158. Ghasemi A, Zahediasl S, Syedmoradi L, Azizi F. Association between serum nitric oxide metabolites and hypertension in a general population. Int Angiol. 2011;30(4):380–7.

    CAS  PubMed  Google Scholar 

  159. Dong JY, Qin LQ, Zhang Z, Zhao Y, Wang J, Arigoni F, et al. Effect of oral L-arginine supplementation on blood pressure: a meta-analysis of randomized, double-blind, placebo-controlled trials. Am Heart J. 2011;162(6):959–65.

    Article  CAS  PubMed  Google Scholar 

  160. Gokce N. L-arginine and hypertension. J Nutr. 2004;134(10 Suppl):2807S–11. discussion 2818S-2819S.

    CAS  PubMed  Google Scholar 

  161. Cowburn AS, Takeda N, Boutin AT, Kim JW, Sterling JC, Nakasaki M, et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc Natl Acad Sci U S A. 2013;110(43):17570–5. Highlights the significance of the balance of HIF isoforms in the regulation of blood pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010;24(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nagai M, Terao S, Vital SA, Rodrigues SF, Yilmaz G, Granger DN. Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension. Exp Transl Stroke Med. 2011;3:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol. 1998;160(11):5347–54.

    CAS  PubMed  Google Scholar 

  165. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182(6):1683–93.

    Article  CAS  PubMed  Google Scholar 

  166. Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H, Fujii-Kuriyama Y. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci U S A. 1998;95(13):7368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chowdhury R, Godoy LC, Thiantanawat A, Trudel LJ, Deen WM, Wogan GN. Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma cells. Chem Res Toxicol. 2012;25(10):2194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Palmer LA, Gaston B, Johns RA. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol. 2000;58(6):1197–203.

    CAS  PubMed  Google Scholar 

  169. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brüne B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003;14(8):3470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yuan G, Peng YJ, Reddy VD, Makarenko VV, Nanduri J, Khan SA, et al. Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013;110(19):E1788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nanduri J, Peng YJ, Yuan G, Kumar GK, Prabhakar NR. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015;93(5):473–80. Reviews the implications of HIF axis in the development of chronic intermittent hypoxia related hypertension.

    Article  CAS  Google Scholar 

  172. Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, et al. Elevated endothelial hypoxia-inducible factor-1α contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension. 2015;66(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  173. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8(6 Pt 2):II127–34.

    CAS  PubMed  Google Scholar 

  174. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37(2 Pt 2):429–32.

    Article  CAS  PubMed  Google Scholar 

  175. Campese VM. Salt sensitivity in hypertension. Renal and cardiovascular implications. Hypertension. 1994;23(4):531–50.

    Article  CAS  PubMed  Google Scholar 

  176. Chrysant GS, Bakir S, Oparil S. Dietary salt reduction in hypertension—what is the evidence and why is it still controversial? Prog Cardiovasc Dis. 1999;42(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  177. Meng L, Fu B, Zhang T, Han Z, Yang M. Salt sensitivity of blood pressure in non-dialysis patients with chronic kidney disease. Ren Fail. 2014;36(3):345–50.

    Article  CAS  PubMed  Google Scholar 

  178. Li N, Chen L, Yi F, Xia M, Li PL. Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla. Circ Res. 2008;102(9):1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mattson DL, Higgins DJ. Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension. 1996;27(3 Pt 2):688–92.

    Article  CAS  PubMed  Google Scholar 

  180. Zewde T, Mattson DL. Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension. Hypertension. 2004;44(4):424–8.

    Article  CAS  PubMed  Google Scholar 

  181. Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB, et al. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol. 1998;274(3 Pt 2):F481–9.

    CAS  PubMed  Google Scholar 

  182. Harris RC, Breyer MD. Physiological regulation of cyclooxygenase-2 in the kidney. Am J Physiol Renal Physiol. 2001;281(1):F1–11.

    CAS  PubMed  Google Scholar 

  183. Tan DY, Meng S, Cason GW, Manning Jr RD. Mechanisms of salt-sensitive hypertension: role of inducible nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2000;279(6):R2297–303.

    CAS  PubMed  Google Scholar 

  184. Szentiványi Jr M, Zou AP, Mattson DL, Soares P, Moreno C, Roman RJ, et al. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R266–72.

    Article  PubMed  Google Scholar 

  185. Wang Z, Zhu Q, Xia M, Li PL, Hinton SJ, Li N. Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla. Hypertension. 2010;55(5):1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li N, Yi F, Sundy CM, Chen L, Hilliker ML, Donley DK, et al. Expression and actions of HIF prolyl-4-hydroxylase in the rat kidneys. Am J Physiol Renal Physiol. 2007;292(1):F207–16.

    Article  CAS  PubMed  Google Scholar 

  187. Zhu Q, Wang Z, Xia M, Li PL, Zhang F, Li N. Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochim Biophys Acta. 2012;1822(6):936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhu Q, Hu J, Han WQ, Zhang F, Li PL, Wang Z, et al. Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am J Hypertens. 2014;27(1):107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Guo G, Winmill R, Arend M, Flippin L, Lin A, Klaus S, Liu D, Langsetmo I. Correction of anemia without exacerbation of hypertension in a rat model of chronic kidney disease: comparison of FG-2216 to recombinant erythropoietin [abstract]. J Am Soc Nephrol. 2008;19:654A.

  190. Besarab A, Provenzano R, Fishbane S, Sun CH, Belo DS, Neff TB, Lee TT, Franco M, Leong R, Yu KHP. FG-4592 Oral hypoxia-inducible factor prolyl hydroxylase inhibitor corrects anemia in nondialysis CKD patients without IV Iron [abstract]. J Am Soc Nephrol. 2011;22:196A.

  191. Locatelli F, Olivares J, Walker R, Wilkie M, Jenkins B, Dewey C, et al. Novel erythropoiesis stimulating protein for treatment of anemia in chronic renal insufficiency. Kidney Int. 2001;60(2):741–7.

    Article  CAS  PubMed  Google Scholar 

  192. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32.

    Article  PubMed  Google Scholar 

  193. Besarab A, Leong R, Franco M, Roberts BK, Lee T, Neff TB, Yu KHP. FG-4592, a novel oral hypoxia inducible factor (HIF) stabilizer, raises hemoglobin (Hb) in diabetic subjects with anemia of chronic kidney disease (CKD) [abstract]. 73rd Scientific Sessions of the American Diabetes Association; 2013 Jun 21-25; Chicago, IL, USA.

  194. United States Securities and Exchange Commission, Washington, D.C. 20549. Form S-1 registration statement under the Securities Act of 1933. Akebia Therapeutics, Inc. [http://www.sec.gov/Archives/edgar/data/1517022/000119312514055104/d629509ds1.htm]. Accessed 2015 Dec 21.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhanah Yousaf.

Ethics declarations

Conflict of Interest

Dr. Spinowitz reports grants from AstraZeneca, Bayer, Gilead, Fibrogen, Relypsa, ZS Pharma, and is on the speaker panel or advisory board for Akebia, Fresenius, Hospira, and Vifor. Dr. Yousaf declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Therapeutic Trials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, F., Spinowitz, B. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin?. Curr Hypertens Rep 18, 23 (2016). https://doi.org/10.1007/s11906-016-0629-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0629-6

Keywords

Navigation