Skip to main content
Log in

The Effects of Flavonoids on Bone

  • Nutrition, Exercise, and Lifestyle in Osteoporosis (C Weaver and S Ferrari, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis and fragility fractures are a growing problem for our aging population with around 1 in 2 women and 1 in 5 men suffering from an osteoporotic fracture during their lifetime. Although there are established factors that can reduce the risk of fracture such as maintaining physical activity, ceasing smoking, and adequate vitamin D status, and intakes of calcium; dietary mechanisms are less well established. The relevance of the flavonoid group of bioactive compounds found in fruits and vegetables has been less investigated. Two human epidemiologic studies in women found positive associations between total dietary flavonoid intake and bone mineral density. Flavonoids may protect against bone loss by upregulating signaling pathways that promote osteoblast function, by reducing the effects of oxidative stress or chronic low-grade inflammation. The limitations of the existing research are explored in the manuscript and it is concluded that further research is needed, in this promising area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone. 2001;29(6):517–22.

    Article  PubMed  Google Scholar 

  2. Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367(9527):2010–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr. 2011;65(3):378–85.

    Article  CAS  PubMed  Google Scholar 

  4. McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA. An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr. 2011;141(8):1516–23.

    Article  CAS  PubMed  Google Scholar 

  5. Weaver CM, Alekel DL, Ward WE, Ronis MJ. Flavonoid intake and bone health. J Nutr Gerontol Geriat. 2012;31(3):239–53. A comprehensive review of flavonoid intake and bone health.

    Article  Google Scholar 

  6. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asia Pac J Trop Med. 2012;5(3):243–8.

    Article  CAS  Google Scholar 

  7. Svedbom A, Hernlund E, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos. 2013;8(1–2):137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Becker DJ, Kilgore ML, Morrisey MA. The societal burden of osteoporosis. Curr Rheumatol Rep. 2010;12(3):186–91.

    Article  PubMed  Google Scholar 

  9. The Surgeon General. Bone Health and Osteoporosis: a report of the Surgeon General. Rockville, MD: US Department of Health and Human Services, Office of the Surgeon General. 2004.

  10. United Nations. World Population Prospects: the 2012 Revision, Highlights and Advance Tables. 2013.

  11. Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, et al. Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr. 2002;76(1):245–52.

    CAS  PubMed  Google Scholar 

  12. Chen YM, Ho SC, Woo JL. Greater fruit and vegetable intake is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr. 2006;96(4):745–51.

    CAS  PubMed  Google Scholar 

  13. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–36.

    CAS  PubMed  Google Scholar 

  14. Zalloua PA, Hsu YH, Terwedow H, Zang T, Wu D, Tang G, et al. Impact of seafood and fruit consumption on bone mineral density. Maturitas. 2006

  15. Prynne CJ, Mishra GD, O'Connell MA, Muniz G, Laskey MA, Yan L, et al. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr. 2006;83(6):1420–8.

    CAS  PubMed  Google Scholar 

  16. Hardcastle A. The influence of fruit and vegetables on postmenopausal women's bone health: Aberdeen University; 2008.

  17. Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008;88(2):465–74.

    CAS  PubMed  Google Scholar 

  18. Macdonald HM, Hardcastle AC, Duthie GG, Duthie SJ, Aucott L, Sandison R, et al. Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers. Br J Nutr. 2009;102(10):1477–86 [Epub Jun 23, 2009].

    Article  CAS  PubMed  Google Scholar 

  19. Lin P-H, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P, et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2003;133(10):3130–6.

    CAS  PubMed  Google Scholar 

  20. Muhlbauer RC, Lozano A, Reinli A. Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res. 2002;17(7):1230–6.

    Article  CAS  PubMed  Google Scholar 

  21. USDA database for the flavonoid content of selected foods [Internet]. 2013. Available at: http://www.ars.usda.gov/nutrientdata/flav.

  22. Amanatidis S, Mackerras D, Simpson JM. Comparison of two frequency questionnaires for quantifying fruit and vegetable intake. Pub Health Nutr. 2001;4(2):233–9.

    Article  CAS  Google Scholar 

  23. Haraldsdottir J. Minimizing error in the field: quality control in dietary surveys. Eur J Clin Nutr. 1993;47 Suppl 2:S19–24.

    PubMed  Google Scholar 

  24. Bingham S, Luben R, Welch A, Low YL, Khaw KT, Wareham N, et al. Associations between dietary methods and biomarkers, and between fruits and vegetables and risk of ischaemic heart disease, in the EPIC Norfolk Cohort Study. Int J Epidemiol. 2008;37(5):978–87.

    Article  PubMed  Google Scholar 

  25. Hardcastle AC, Aucott L, Reid DM, Macdonald HM. Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res. 2011;26(5):941–7. The first study looking at associations between flavonoids and bone health in humans.

    Article  CAS  PubMed  Google Scholar 

  26. Kyle JA. Flavonoids in Health and Disease: University of Aberdeen; 2006.

  27. Chun OK, Lee SG, Wang Y, Vance T, Song WO. Estimated flavonoid intake of the elderly in the United States and around the world. J Nutr Gerontol Geriatr. 2012;31(3):190–205.

    Article  PubMed  Google Scholar 

  28. Welch A, MacGregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res. 2012;27(9):1872–8. The second published study on associations between human bone health and flavonoid intakes.

    Article  CAS  PubMed  Google Scholar 

  29. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995;155(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8(3):168–75.

    Article  CAS  PubMed  Google Scholar 

  31. Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, et al. Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res. 1995;10(11):1802–15.

    Article  CAS  PubMed  Google Scholar 

  32. Kanis J, Johnell O, Gullberg B, Allander E, Elffors L, Ranstam J, et al. Risk factors for hip fracture in men from southern Europe: the MEDOS study. Mediterranean Osteoporosis Study. Osteoporos Int. 1999;9(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez-Avila M, Stampfer MJ, Ravnikar VA, Willett WC, Schiff I, Francis M, et al. Caffeine and other predictors of bone density among pre- and peri-menopausal women. Epidemiology. 1993;4(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  34. Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ. Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med. 2002;162(9):1001–6.

    Article  PubMed  Google Scholar 

  35. Hegarty VM, May HM, Khaw KT. Tea drinking and bone mineral density in older women. Am J Clin Nutr. 2000;71(4):1003–7.

    CAS  PubMed  Google Scholar 

  36. Chen Z, Pettinger MB, Ritenbaugh C, LaCroix AZ, Robbins J, Caan BJ, et al. Habitual tea consumption and risk of osteoporosis: a prospective study in the women's health initiative observational cohort. Am J Epidemiol. 2003;158(8):772–81.

    Article  CAS  PubMed  Google Scholar 

  37. Welch A, Camus J, Dalzell N, Oakes S, Reeve J, Khaw KT. Broadband ultrasound attenuation (BUA) of the heel bone and its correlates in men and women in the EPIC-Norfolk cohort: a cross-sectional population-based study. Osteoporos Int. 2004;15(3):217–25 [Epub Jan 28, 2004].

    Article  PubMed  Google Scholar 

  38. Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet. 2004;363(9404):197–202.

    Article  PubMed  Google Scholar 

  39. Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. Drug Design Dev Ther. 2013;7:435–48.

    CAS  Google Scholar 

  40. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem. 2012;151(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  41. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shen CL, Yeh JK, Cao JJ, Chyu MC, Wang JS. Green tea and bone health: evidence from laboratory studies. Pharmacol Res. 2011;64(2):155–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Khosla S, Melton III LJ, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nieves JW. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int. 2013;24(3):771–86. A comprehensive review of nutrients and bioactive compounds.

    Article  CAS  PubMed  Google Scholar 

  45. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shen CL, von Bergen V, Chyu MC, Jenkins MR, Mo H, Chen CH, et al. Fruits and dietary phytochemicals in bone protection. Nutr Res. 2012;32(12):897–910.

    Article  CAS  PubMed  Google Scholar 

  47. Peluso I, Raguzzini A, Serafini M. Effect of flavonoids on circulating levels of TNF-alpha and IL-6 in humans: a systematic review and meta-analysis. Molec Nutr Food Res. 2013;57(5):784–801.

    Article  CAS  Google Scholar 

  48. Horcajada MN, Offord E. Naturally plant-derived compounds: role in bone anabolism. Curr Molec Pharmacol. 2012;5(2):205–18. A comprehensive review of the role of plant-derived compounds on mechanisms relating to bone health.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

A. A. Welch declares no conflicts of interest.

A. C. Hardcastle declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailsa A. Welch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, A.A., Hardcastle, A.C. The Effects of Flavonoids on Bone. Curr Osteoporos Rep 12, 205–210 (2014). https://doi.org/10.1007/s11914-014-0212-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0212-5

Keywords

Navigation