Skip to main content

Advertisement

Log in

Molecular genetics of Alzheimer’s disease

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Alzheimer disease (AD) is the most common cause of dementia. In the past decade, many advances in the understanding of the etiology of AD have been reported. Familial early onset AD is a heterogeneous disorder that can be caused by mutations in at least three different genes. Current studies are focused on identifying genetic risk factors for late onset AD. In this article, the authors will review the progress in understanding the pathogenic implications of the genes mutated in familial early onset AD and the mapping studies to identify additional genes involved in late-onset AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Alzheimer A: Über eigenartige Krankheitsfälle des späteren Alters. A Zschr ges Neurol Psychiat 1911, 4:356–385.

    Google Scholar 

  2. Rocca WA, Hofman A, Brayne C, et al.: Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980–1990 prevalence findings. The EURODEM-Prevalence Research Group. Ann Neurol 1991, 30:381–390.

    PubMed  CAS  Google Scholar 

  3. Jorm AF, Korten AE, Henderson AS: The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 1987, 76:465–479.

    PubMed  CAS  Google Scholar 

  4. Ritchie K, Kildea D: Is senile dementia “age-related” or “aging-related?” Evidence from meta-analysis of dementia prevalence in the oldest old. Lancet 1995, 346:931–934.

    PubMed  CAS  Google Scholar 

  5. Osuntokun B, Ogunniyi A, Lekauwa U: Alzheimer’s disease in Nigeria. Afr J Med Sci 1992, 2171–2177.

  6. Chandra V, Pandav R, Dodge HH, et al.: Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study. Neurology 2001, 57:985–989.

    PubMed  CAS  Google Scholar 

  7. Zhang MY, Katzman R, Salmon D, et al.: The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol 1990, 27:428–437.

    PubMed  CAS  Google Scholar 

  8. Barclay LL, Zemcov A, Blass JP, Sansone J: Survival in Alzheimer’s disease and vascular dementias. Neurology 1985, 35:834–840.

    PubMed  CAS  Google Scholar 

  9. Akesson HO: A population study of senile and arteriosclerotic psychoses. Hum Hered 1969, 19:546–566.

    PubMed  CAS  Google Scholar 

  10. Molsa PK, Marttila RJ, Rinne UK: Epidemiology of dementia in a Finnish population. Acta Neurol Scand 1982, 65:541–552.

    PubMed  CAS  Google Scholar 

  11. Braak H, Braak E: Neuropathological staging of Alzheimerrelated changes. Acta Neuropathol (Berl) 1991, 82:239–259.

    CAS  Google Scholar 

  12. Selkoe DJ: Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994, 17:489–517.

    PubMed  CAS  Google Scholar 

  13. Games D, Adams D, Alessandrini R, et al.: Alzheimer-type neuropathology in transgenic mice overexpressing V717F betaamyloid precursor protein. Nature 1995, 373:523–527.

    PubMed  CAS  Google Scholar 

  14. Goedert M, Crowther RA: Amyloid plaques, neurofibrillary tangles and their relevance for the study of Alzheimer’s disease. Neurobiol Aging 1989, 10:405–406.

    PubMed  CAS  Google Scholar 

  15. Wang JZ, Wu Q, Smith A, et al.: Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett 1998, 436:28–34.

    PubMed  CAS  Google Scholar 

  16. Bondareff W, Mountjoy CQ, Roth M, Hauser DL: Neurofibrillary degeneration and neuronal loss in Alzheimer’s disease. Neurobiol Aging 1989, 10:709–715.

    PubMed  CAS  Google Scholar 

  17. Massoud F, Devi G, Stern Y, et al.: A clinicopathological comparison of community-based and clinic-based cohorts of patients with dementia. Arch Neurol 1999, 56:1368–1373.

    PubMed  CAS  Google Scholar 

  18. Holmes C, Cairns N, Lantos P, Mann A: Validity of current clinical criteria for Alzheimer’s disease, vascular dementia and dementia with Lewy bodies. Br J Psychiatry 1999, 17:445–450.

    Google Scholar 

  19. Galasko D, Chang L, Motter R, et al.: High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 1998, 55:937–945.

    PubMed  CAS  Google Scholar 

  20. Hulstaert F, Blennow K, Ivanoiu A, et al.: Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 1999, 52:1555–1562.

    PubMed  CAS  Google Scholar 

  21. Andreasen N, Minthon L, Davidsson P, et al.: Evaluation of CSFtau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 2001, 58:373–379.

    PubMed  CAS  Google Scholar 

  22. Jensen M, Schroder J, Blomberg M, et al.: Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Ann Neurol 1999, 45:504–511.

    PubMed  CAS  Google Scholar 

  23. Ertekin-Taner N, Graff-Radford N, Younkin LH, et al.: Heritability of plasma amyloid beta in typical late-onset Alzheimer’s disease pedigrees. Genet Epidemiol 2001, 21:19–30.

    PubMed  CAS  Google Scholar 

  24. Han X, Fagan AM, Cheng H, et al.: Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 2003, 54:115–119.

    PubMed  CAS  Google Scholar 

  25. Ezquerra M, Carnero C, Blesa R, et al.: A presenilin 1 mutation (Ser169Pro) associated with early-onset AD and myoclonic seizures. Neurology 1999, 52:566–570.

    PubMed  CAS  Google Scholar 

  26. Lopera F, Ardilla A, Martinez A, et al.: Clinical features of earlyonset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997, 277:793–799.

    PubMed  CAS  Google Scholar 

  27. Crook R, Verkkoniemi A, Perez-Tur J, et al.: A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 1998, 4:452–455.

    PubMed  CAS  Google Scholar 

  28. Corder EH, Saunders AM, Strittmatter WJ, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921–923.

    PubMed  CAS  Google Scholar 

  29. Goate A, Chartier-Harlin MC, Mullan M, et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349:704–706.

    PubMed  CAS  Google Scholar 

  30. Sherrington R, Rogaev EI, Liang Y, et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375:754–760.

    PubMed  CAS  Google Scholar 

  31. Levy-Lahad E, Wasco W, Poorkaj P, et al.: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995, 269:973–977.

    PubMed  CAS  Google Scholar 

  32. van Duinen SG, Castano EM, Prelli F, et al.: Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci U S A 1987, 84:5991–5994.

    PubMed  Google Scholar 

  33. Van Broeckhoven C, Haan J, Bakker E, et al.: Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 1990, 248:1120–1122.

    PubMed  Google Scholar 

  34. Levy E, Carman MD, Fernandez-Madrid IJ, et al.: Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990, 248:1124–1126.

    PubMed  CAS  Google Scholar 

  35. Koo EH, Squazzo SL: Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 1994, 269:17386–17389.

    PubMed  CAS  Google Scholar 

  36. Sastre M, Steiner H, Fuchs K, et al.: Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2001, 2:835–841.

    PubMed  CAS  Google Scholar 

  37. Citron M, Oltersdorf T, Haass C, et al.: Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 1992, 360:672–674.

    PubMed  CAS  Google Scholar 

  38. De Strooper B, Annaert W: Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 2000, 113:1857–1870.

    PubMed  Google Scholar 

  39. Weitkamp LR, Nee L, Keats B, et al.: Alzheimer disease: evidence for susceptibility loci on chromosomes 6 and 14. Am J Hum Genet 1983, 35:443–453.

    PubMed  CAS  Google Scholar 

  40. Schellenberg GD, Bird TD, Wijsman EM, et al.: Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992, 258:668–671.

    PubMed  CAS  Google Scholar 

  41. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Alzheimer’s Disease Collaborative Group. Nat Genet 1995, 11:219–222.

  42. Rosenberg RN: The molecular and genetic basis of AD: the end of the beginning. The 2000 Wartenberg lecture. Neurology 2000, 54:2045–2054.

    PubMed  CAS  Google Scholar 

  43. Finckh U, Alberici A, Antoniazzi M, et al.: Variable expression of familial Alzheimer disease associated with presenilin 2 mutation M239I. Neurology 2000, 54:2006–2008.

    PubMed  CAS  Google Scholar 

  44. Bird TD, Levy-Lahad E, Poorkaj P, et al.: Wide range in age of onset for chromosome 1-related familial Alzheimer’s disease. Ann Neurol 1996, 40:932–936.

    PubMed  CAS  Google Scholar 

  45. Kovacs DM, Fausett HJ, Page KJ, et al.: Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 1996, 2:224–229.

    PubMed  CAS  Google Scholar 

  46. Thinakaran G, Harris CL, Ratovitski T, et al.: Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 1997, 272:28415–28422.

    PubMed  CAS  Google Scholar 

  47. Borchelt DR, Thinakaran G, Eckman CB, et al.: Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 1996, 17:1005–1013.

    PubMed  CAS  Google Scholar 

  48. Wolfe MS, Xia W, Ostaszewski BL, et al.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999, 398:513–517.

    PubMed  CAS  Google Scholar 

  49. Finckh U: The future of genetic association studies in Alzheimer disease. J Neural Transm 2003, 110:253–266.

    PubMed  CAS  Google Scholar 

  50. Myers A, Holmans P, Marshall H, et al.: Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 2000, 290:2304–2305. Report of a candidate region on chromosome 10 for late-onset FAD. The candidate locus is in the same region as Bertram et al. [51].

    PubMed  CAS  Google Scholar 

  51. Bertram L, Blacker D, Mullin K, et al.: Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 2000, 290:2302–2303. The authors reported evidence of linkage and association with markers flanking the insulin-degrading enzyme on chromosome 10. This gene is a compelling candidate because of its role in Aâ degradation.

    PubMed  CAS  Google Scholar 

  52. Zannis VI, Just PW, Breslow JL: Human apolipoprotein E isoprotein subclasses are genetically determined. Am J Hum Genet 1981, 33:11–24.

    PubMed  CAS  Google Scholar 

  53. Kukull WA, Schellenberg GD, Bowen JD, et al.: Apolipoprotein E in Alzheimer’s disease risk and case detection: a case-control study. J Clin Epidemiol 1996, 49:1143–1148.

    PubMed  CAS  Google Scholar 

  54. Martins RN, Clarnette R, Fisher C, et al.: ApoE genotypes in Australia: roles in early and late onset Alzheimer’s disease and Down’s syndrome. Neuroreport 1995, 6:1513–1516.

    PubMed  CAS  Google Scholar 

  55. Henderson AS, Easteal S, Jorm AF, et al.: Apolipoprotein E allele epsilon 4, dementia, and cognitive decline in a population sample. Lancet 1995, 346:1387–1390.

    PubMed  CAS  Google Scholar 

  56. Corbo RM, Scacchi R: Apolipoprotein E (APOE) allele distribution in the world: is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 1999, 63:301–310.

    PubMed  CAS  Google Scholar 

  57. Tang MX, Stern Y, Marder K, et al.: The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA 1998, 279:751–755.

    PubMed  CAS  Google Scholar 

  58. Graff-Radford NR, Green RC, Go RC, et al.: Association between apolipoprotein E genotype and Alzheimer disease in African American subjects. Arch Neurol 2002, 59:594–600.

    PubMed  Google Scholar 

  59. Poirier J, Baccichet A, Dea D, Gauthier S: Cholesterol synthesis and lipoprotein reuptake during synaptic remodeling in hippocampus in adult rats. Neuroscience 1993, 55:81–90.

    PubMed  CAS  Google Scholar 

  60. Nathan BP, Bellosta S, Sanan DA, et al.: Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994, 264:850–852.

    PubMed  CAS  Google Scholar 

  61. Siest G, Pillot T, Regis-Bailly A, et al.: Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem 1995, 41:1068–1086.

    PubMed  CAS  Google Scholar 

  62. Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622–630.

    PubMed  CAS  Google Scholar 

  63. Strittmatter WJ, Saunders AM, Schmechel D, et al.: Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993, 90:1977–1981.

    PubMed  CAS  Google Scholar 

  64. Holtzman DM, Fagan AM, Mackey B, et al.: Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 2000, 47:739–747.

    PubMed  CAS  Google Scholar 

  65. Olichney JM, Hansen LA, Galasko D, et al.: The apolipoprotein E epsilon 4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer’s disease and Lewy body variant. Neurology 1996, 47:190–196.

    PubMed  CAS  Google Scholar 

  66. Pericak-Vance MA, Bass ML, Yamaoka LH, et al.: Complete genomic screen in late-onset familial Alzheimer’s disease. Neurobiol Aging 1998, 19(suppl):S39-S42.

    PubMed  CAS  Google Scholar 

  67. Pericak-Vance MA, Bass MP, Yamaoka LH, et al.: Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA 1997, 278:1237–1241.

    PubMed  CAS  Google Scholar 

  68. Pericak-Vance MA, Grubber J, Bailey LR, et al.: Identification of novel genes in late-onset Alzheimer’s disease. Exp Gerontol 2000, 35:1343–1352.

    PubMed  CAS  Google Scholar 

  69. Wu WS, Holmans P, Wavrant-DeVrieze F, et al.: Genetic studies on chromosome 12 in late-onset Alzheimer disease. JAMA 1998, 280:619–622.

    PubMed  CAS  Google Scholar 

  70. Rogaeva E, Premkumar S, Song Y, et al.: Evidence for an Alzheimer disease susceptibility locus on chromosome 12 and for further locus heterogeneity. JAMA 1998, 280:614–618.

    PubMed  CAS  Google Scholar 

  71. Poduslo SE, Yin X: Chromosome 12 and late-onset Alzheimer’s disease. Neurosci Lett 2001, 310:188–190.

    PubMed  CAS  Google Scholar 

  72. Causevic M, Ramoz N, Haroutunian V, et al.: Lack of association between the levels of the low-density lipoprotein receptorrelated protein (LRP) and either Alzheimer dementia or LRP exon 3 genotype. J Neuropathol Exp Neurol 2003, 62:999–1005.

    PubMed  CAS  Google Scholar 

  73. Koster MN, Dermaut B, Cruts M, et al.: The alpha2-macroglobulin gene in AD: a population-based study and meta-analysis. Neurology 2000, 55:678–684.

    PubMed  CAS  Google Scholar 

  74. Blacker D, Bertram L, Saunders AJ, et al.: Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 2003, 12:23–32. A linkage study was done using a large dataset (437 AD families). This study performed parametric and non-parametric methods, finding 12 additional locations that met the criteria for suggestive linkage.

    PubMed  CAS  Google Scholar 

  75. Myers A, Wavrant De-Vrieze F, Holmans P, et al.: Full genome screen for Alzheimer disease: stage II analysis. Am J Med Genet 2002, 114:235–244. Stage II of a genome-wide scan performed in a large dataset. This linkage study indicates that many potential candidate genes can be involved in familial AD.

    PubMed  Google Scholar 

  76. Ertekin-Taner N, Graff-Radford N, Younkin LH, et al.: Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 2000, 290:2303–2304. This is the first study to use an endophenotype in an attempt to map susceptibility genes for late-onset AD. The study reports significant linkage to chromosome 10, using plasma levels of Aâ42 as a quantitative trait.

    PubMed  CAS  Google Scholar 

  77. Saccone NL, Kwon JM, Corbett J, et al.: A genome screen of maximum number of drinks as an alcoholism phenotype. Am J Med Genet 2000, 96:632–637.

    PubMed  CAS  Google Scholar 

  78. Porjesz B, Begleiter H, Wang K, et al.: Linkage and linkage disequilibrium mapping of ERP and EEG phenotypes. Biol Psychol 2002, 61:229–248.

    PubMed  Google Scholar 

  79. Prince JA, Feuk L, Gu HF, et al.: Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum Mutat 2003, 22:363–371.

    PubMed  CAS  Google Scholar 

  80. Finckh U, van Hadeln K, Muller-Thomsen T, et al.: Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics 2003, 4:213–217.

    PubMed  CAS  Google Scholar 

  81. Abraham R, Myers A, Wavrant-DeVrieze F, et al.: Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer’s disease. Hum Genet 2001, 109:646–652.

    PubMed  CAS  Google Scholar 

  82. Ertekin-Taner N, Ronald J, Asahara H, et al.: Fine mapping of the alpha-T catenin gene to a quantitative trait locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Hum Mol Genet 2003, 12:3133–3143.

    PubMed  CAS  Google Scholar 

  83. Olson JM, Goddard KA, Dudek DM: A second locus for verylate-onset Alzheimer disease: a genome scan reveals linkage to 20p and epistasis between 20p and the amyloid precursor protein region. Am J Hum Genet 2002, 71:154–161.

    PubMed  CAS  Google Scholar 

  84. Daw EW, Heath SC, Wijsman EM: Multipoint oligogenic analysis of age-at-onset data with applications to Alzheimer disease pedigrees. Am J Hum Genet 1999, 64:839–851.

    PubMed  CAS  Google Scholar 

  85. Meyer MR, Tschanz JT, Norton MC, et al.: APOE genotype predicts when-not whether-one is predisposed to develop Alzheimer disease. Nat Genet 1998, 19:321–322.

    PubMed  CAS  Google Scholar 

  86. Tsai MS, Tangalos EG, Petersen RC, et al.: Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet 1994, 54:643–649.

    PubMed  CAS  Google Scholar 

  87. Chartier-Harlin MC, Parfitt M, Legrain S, et al.: Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and lateonset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet 1994, 3:569–574.

    PubMed  CAS  Google Scholar 

  88. Poirier J, Davignon J, Bouthillier D, et al.: Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993, 342:697–699.

    PubMed  CAS  Google Scholar 

  89. Lendon CL, Martinez A, Behrens IM, et al.: E280A PS-1 mutation causes Alzheimer’s disease but age of onset is not modified by ApoE alleles. Hum Mutat 1997, 10:186–195.

    PubMed  CAS  Google Scholar 

  90. Sorbi S, Nacmias B, Forleo P, et al.: Epistatic effect of APP717 mutation and apolipoprotein E genotype in familial Alzheimer’s disease. Ann Neurol 1995, 38:124–127.

    PubMed  CAS  Google Scholar 

  91. Haan J, Van Broeckhoven C, van Duijn CM, et al.: The apolipoprotein E epsilon 4 allele does not influence the clinical expression of the amyloid precursor protein gene codon 693 or 692 mutations. Ann Neurol 1994, 36:434–437.

    PubMed  CAS  Google Scholar 

  92. Van Broeckhoven C, Backhovens H, Cruts M, et al.: APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer’s disease. Neurosci Lett 1994, 169:179–180.

    PubMed  Google Scholar 

  93. Cornejo W, Lopera F, Uribe CS, Salinas M: Descripción de una familia con demencia presenil tipo Alzheimer. Acta Med Colombiana 1987, 12:55–61.

    Google Scholar 

  94. Lopera F, Arcos-Burgos M, Madrigal L, et al.: Demencia tipo Alzheimer con Agregación familiar en Antioquia, Colombia. Acta Neurológica Colombiana 1994, 10:173–187.

    Google Scholar 

  95. Pastor P, Roe CM, Villegas A, et al.: Apolipoprotein Eepsilon4 modifies Alzheimer’s disease onset in an E280A PS1 kindred. Ann Neurol 2003, 54:163–169.

    PubMed  CAS  Google Scholar 

  96. Scott WK, Hauser ER, Schmechel DE, et al.: Ordered-subsets linkage analysis detects novel Alzheimer disease Loci on chromosomes 2q34 and 15q22. Am J Hum Genet 2003, 73:1041–1051. The authors considered age of onset as a covariate in a genome-wide screen, finding significant NPL LOD scores for different intervals of age on chromosomes 2q34, 9p, and 15q22.

    PubMed  CAS  Google Scholar 

  97. Li YJ, Scott WK, Hedges DJ, et al.: Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 2002, 70:985–993.

    PubMed  CAS  Google Scholar 

  98. Wragg RE, Jeste DV: Overview of depression and psychosis in Alzheimer’s disease. Am J Psychiatry 1989, 146:577–587.

    PubMed  CAS  Google Scholar 

  99. Tunstall N, Owen MJ, Williams J, et al.: Familial influence on variation in age of onset and behavioral phenotype in Alzheimer’s disease. Br J Psychiatry 2000, 176:156–159.

    PubMed  CAS  Google Scholar 

  100. Sweet RA, Nimgaonkar VL, Devlin B, Jeste DV: Psychotic symptoms in Alzheimer disease: evidence for a distinct phenotype. Mol Psychiatry 2003, 8:383–392.

    PubMed  CAS  Google Scholar 

  101. Bacanu SA, Devlin B, Chowdari KV, et al.: Linkage analysis of Alzheimer disease with psychosis. Neurology 2002, 59:118–120. A linkage study performed in a sample of late-onset AD families with two or more members with AD plus psychotic symptoms that found a significant linkage signal on chromosome 2p and a suggestive linkage on chromosome 6q.

    PubMed  CAS  Google Scholar 

  102. Rice JP, Goate A, Williams JT, et al.: Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 1, 6, 8, 10, and 12. Am J Med Genet 1997, 74:247–253.

    PubMed  CAS  Google Scholar 

  103. Wang S, Sun CE, Walczak CA, et al.: Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet 1995, 10:41–46.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor, P., Goate, A.M. Molecular genetics of Alzheimer’s disease. Curr Psychiatry Rep 6, 125–133 (2004). https://doi.org/10.1007/s11920-004-0052-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-004-0052-6

Keywords

Navigation