Skip to main content
Log in

Effect of Treatment with Compressed Propane on Lipases Hydrolytic Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of this work was to assess the influence of compressed propane treatment on the hydrolytic activity of three lipases (Amano PS, Amano AY30, and a non-commercial lipase from Yarrowia lipolytica) free, resuspended, and in immobilized form. To evaluate the effect of process variables on the lipase activity, a semi-factorial experimental design with two levels and four variables was employed for free and immobilized lipases and a full 22 experimental design was carried out for lipases in solution. The residual activity was defined as the ratio of lipase activity before and after treatment with pressurized propane. For free and immobilized lipases, an enhancement in residual lipase activity in most of the experimental conditions investigated was observed. In the case of resuspended lipases, it is shown that enzyme kinetics is sensitive to treatment with compressed propane resulting in remarkable gains and losses of enzyme activity. In a general way, the results showed that the enzyme activity changes significantly depending on the enzyme, the presentation form, and the experimental conditions investigated, allowing the selection of operational conditions in terms of temperature, pressure, exposure time, and depressurization rate for advantageous application of these biocatalysts in hydrolysis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrade, J. M., Oestreicher, E. G., Antunes, O. A. C., Oliveira, J. V., Oliveira, D., Soares, C. M, & Dariva, C. (2008). Effect of treatment with compressed CO2 and propane on D-hydantoinase activity. Journal of Supercritical Fluids, in press. DOI 10.1016/j.supflu.2007.11.019.

  • Cernia, E., Palocci, C., & Soro, S. (1998). The role of the reation medium in lipase-catalyzed esterifications and transesterifications. Chemistry and Physics of Lipids, 93, 157–164.

    Article  CAS  Google Scholar 

  • Chaudhary, A. J., Kamat, S., Beckman, E. J., Nurok, N., Hajdu, P., Kleyle, R., & Russell, A. J. (1996). Control of subtilisin substrate specificity by solvent engineering in organic solvents and supercritical fluoroform. Journal of American Chemical Society, 118, 12891–12896.

    Article  CAS  Google Scholar 

  • Chen, J. S., Balaban, M. O., Wei, C. L., Marshall, M. R., & Hsu, W. Y. (1992). Inactivation of polyphenol oxidase by high-pressure carbon dioxide. Journal of Agricultural and Food Chemistry, 40, 2345–2350.

    Article  CAS  Google Scholar 

  • Destain, J., Roblain, D., & Thonart, P. (1997). Improvement of lipase production from Yarrowia lipolytica. Biotechnology Letters, 19, 105–108.

    Article  CAS  Google Scholar 

  • Erbeldinger, M., Mesiano, A. J., & Russell, A. J. (2000). Enzymatic catalysis of formation of Z-aspartame in ionic liquid - an alternative to enzymatic catalysis in organic solvents. Biotechnology Progress, 16, 1129–1134.

    Article  CAS  Google Scholar 

  • Freire, D. M. G., Gomes, P. M., Bom, E. P. S., & Sant’Anna Jr., G. L. (1997). Lipase production by a new promissing strain of Penicillium restrictum. Revista de Microbiologia, 28, 6–12.

    Google Scholar 

  • Fricks, A. T., Souza, D. P. B., Oestreicher, E. G., Antunes, O. A. C., Girardi, J. S., Oliveira, D., & Dariva, C. (2006). Evaluation of radish (Raphanus Sativus L.) Peroxidase activity after high-pressure treatment with carbon dioxide. Journal of Supercritical Fluids, 38, 347–353.

    Article  CAS  Google Scholar 

  • Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92, 405–412.

    Article  CAS  Google Scholar 

  • Giβauf, A., & Gamse, T. (2000). A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment. Journal of Molecular Catalysis B: Enzymatic, 9, 57–64.

    Article  Google Scholar 

  • Habulin, M., & Knez, Z. (2001). Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. Journal of Chemical Technology and Biotechnology, 76, 1260–1265.

    Article  CAS  Google Scholar 

  • Heremans, K., Goossens, K., & Smeller, L. (1996). Pressure-tuning spectroscopy of proteins: Fourier transform infrared studies in the diamond. Oxford, USA: Anvil Cell.

    Google Scholar 

  • Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications. Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Shimoda, M., Yonekura, A., & Osajima, Y. (1996). Inactivation of enzymes and decomposition of a-helix structure by supercritical carbon dioxide microbubble method. Journal of Agricultural and Food Chemistry, 44, 2646–2650.

    Article  CAS  Google Scholar 

  • Jessop, P. G., & Leitner, W. (1999). Chemical synthesis using supercritical fluids. Weinheim, USA: Wiley-VCH.

    Book  Google Scholar 

  • Kaewthong, W., & H-Kittikun, A. (2004). Glycerolysis of palm olein by immobilized lipase PS in organic solvents. Enzyme and Microbial Technology, 35, 218–223.

    Article  CAS  Google Scholar 

  • Kamat, S., Barrera, J., Beckman, E. J., & Russell, A. J. (1992). Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: I. Optimization of enzyme environments. Biotechnology and Bioengineering, 40, 158–164.

    Article  CAS  Google Scholar 

  • Kamat, S., Beckman, E. J., & Russell, A. J. (1993). Control of enzyme enantioselectivity with pressure changes in supercritical fluoroform. Journal of American Chemical Society, 115, 8845–8851.

    Article  CAS  Google Scholar 

  • Kamat, S., Beckman, E. J., & Russel, A. J. (1995). Enzyme activity in supercritical fluids. Critical Reviews in Biotechnology, 15, 41–40.

    Article  CAS  Google Scholar 

  • Kasche, V., Schlothauer, R., & Brunner, G. (1988). Enzyme denaturation in supercritical CO2: stabilyzing effect of S–S bonds during the depressurization step. Biotechnology Letters, 10, 569–573.

    Article  CAS  Google Scholar 

  • Kim, K. W., Song, B., Choi, M. Y., & Kim, M. J. (2001). Biocatalysis in ionic liquids: Markedly enhanced enantioselectivity of lipase. Organic Letters, 10, 1507–1512.

    Article  Google Scholar 

  • Knez, Z., & Habulin, M. (2002). Compressed gases as alternative enzymatic-reaction solvents: A short review. Journal of Supercritical Fluids, 23, 29–34.

    Article  CAS  Google Scholar 

  • Kumar, R., Madras, S., & Modak, J. (2004). Enzymatic synthesis of ethyl palmitate in supercritical carbon dioxide. Industrial Engineering and Chemical Research, 43, 1568–1573.

    Article  CAS  Google Scholar 

  • Laane, C., Boeren, S., Hilhorst, R., & Veeger, C. (1987). Optimization of biocatalysis in organic media. In C. Laane, J. Tramper, & M. D. Lilly (Eds.), Biocatalysis in organic media (pp. 65–84). Amsterdam, The Netherlands: Elsevier Science.

    Google Scholar 

  • Laane, C., Boeren, S., Vos, K., & Veeger, C. (2004). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30(1), 81–87.

    Article  Google Scholar 

  • Lanza, M., Priamo, W. L., Oliveira, J. V., Dariva, C. E., & Oliveira, D. (2005). The effect of temperature, pressure, exposure time and depressurization rate on lipase activity in SCCO2. Applied Biochemistry and Biotechnology, 113, 181–188.

    Article  Google Scholar 

  • Lau, R. M., Rantwijk, F. V., Seddon, K. R., & Sheldon, R. A. (2000). Lipase-catalyzed reactions in ionic liquids. Organic Letters, 26, 4189–4196.

    Google Scholar 

  • Lou, W. Y., Zong, M. H., Liu, Y. Y., & Wang, J. F. (2006). Efficient enantioselective hydrolysis of D-L phenilglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems. Journal of Biotechnology, 125, 64–69.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (1991). Design and analysis of experiments. New York, USA: Wiley.

    Google Scholar 

  • Nakaya, H., Miyawaki, O., & Nakamura, G. (2001). Determination of log P for pressurized carbon dioxide and its characterization as a medium for enzyme reaction. Enzyme and Microbial Technology, 28, 176–180.

    Article  CAS  Google Scholar 

  • Ndiaye, P. M., Franceschi, E., Oliveira, D., Dariva, C., Tavares, F. W., & Oliveira, J. V. (2006). Phase behavior of soybean oil, castor oil and their fatty acid ethyl esters in carbon dioxide at high pressures. Journal of Supercritical Fluids, 37, 29–33.

    Article  CAS  Google Scholar 

  • Oliveira, D., Feihrmann, A. C., Dariva, C., Cunha, A. G., Bevilaqua, J. V., Destain, J., Oliveira, J. V., & Freire, D. M. G. (2006a). Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. Journal of Molecular Catalysis B: Enzymatic, 39(1–4), 117–121.

    Article  Google Scholar 

  • Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006b). Assessment of two immobilized lipases activity treated in compressed fluids. The Journal of Supercritical Fluids, 38, 127–133.

    Article  Google Scholar 

  • Oliveira, J. V., & Oliveira, D. (2000). Kinetics of enzymatic alcoholysis of palm kernel oil in SC-CO2. Industrial Engineering and Chemical Research, 39, 4450–4455.

    Article  CAS  Google Scholar 

  • Primo, M. S., Ceni, G. C., Marcon, N. S., Antunes, O. A. C., Oliveira, D., Oliveira, J. V., & Dariva, C. (2007). Effects of compressed carbon dioxide treatment on the specificity of oxidase enzymatic complexes from mate tea leaves. Journal of Supercritical Fluids, 43, 283–290.

    Article  CAS  Google Scholar 

  • Steinberger, D. J., Gamse, T., & Maar, R. (1999). Enzyme inactivation and pre-purification effects of supercritical carbon dioxide (SC-CO2). In A. Bertucco (Ed.), Proceedings of the 5th conference on supercritical fluids and their applications (pp. 339–341). Italy: Verona.

    Google Scholar 

  • Taniguchi, M., Kamihira, M., & Kobayashi, T. (1987). Effect of treatment with supercritical carbon dioxide on enzymatic activity. Agricultural and Biological Chemistry, 51, 593–597.

    CAS  Google Scholar 

  • Tedjo, W., Eshtiaghi, M. N., & Knorr, D. (2000). Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. Journal of Food Science, 65, 1284–1289.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq and PROCAD/CAPES for the financial support of this work and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vladimir Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franken, L.P.G., Marcon, N.S., Treichel, H. et al. Effect of Treatment with Compressed Propane on Lipases Hydrolytic Activity. Food Bioprocess Technol 3, 511–520 (2010). https://doi.org/10.1007/s11947-008-0087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0087-5

Keywords

Navigation