Skip to main content

Advertisement

Log in

Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In the food and agricultural industry, sensors are being used for process control, monitoring quality, and assessing safety. There is a growing demand for carbon dioxide (CO2) sensors in the bulk food storage sector, because CO2 sensors can be used to detect incipient spoilage and to assess CO2 levels in modified-atmosphere packages and storage structures. The market potential for reliable and inexpensive CO2 sensors is huge because of a wide range of applications in the agri-food industry. This review synthesizes information about the types of CO2 sensors, analyzes their detection processes, provides a broad overview of the innovative research on the development of sensors, sensing mechanisms, and their characteristics, and outlines future possibilities for use of CO2 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barsan, N., & Weimar, U. (2001). Conduction of model of metal oxide gas sensors. Journal of Electroceramics, 7, 143–167. doi:10.1023/A:1014405811371.

    Article  CAS  Google Scholar 

  • BCC (2003). Gas sensors and gas metering: applications and markets. Norwalk, CT: BCC Corporation Company.

    Google Scholar 

  • Bultzingslowen, C. V., McEvoy, A. K., McDonagh, C., MacCraith, B. D., Klimant, I. M., Krausec, C., et al. (2002). Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst (London), 27, 1478–1483. doi:10.1039/b207438a.

    Article  Google Scholar 

  • Capone, S., Forleo, A., Francioso, R., Rella, P., Spadavecchia, J., & Presicce, S. (2003). Solid state gas sensors: state of the art and future activities. Journal of Optoelecronics and Advanced materials, 5(5), 1335–1348.

    CAS  Google Scholar 

  • Cattrall, R. W. (1997). Chemical sensors. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Colin, F., Carter, T. J. N., & Wright, J. D. (2003). Modification of a piezo-optical gas dosimeter system towards continuous gas sensing: A feasibility study with carbon dioxide. Sensors and Actuators. B, Chemical, 90, 216–221. doi:10.1016/S0925-4005(03)00031-5.

    Article  Google Scholar 

  • Coppock, R. (1998). Implementing the Kyoto protocol. Issues in Science and Technology, Washington, DC. National Academy of Sciences.

  • CTEH (2007) TO-14 Analytes using a portable GC/MS. Application Note, Center for Toxicology and Environmental Health, University of Arkansas.

  • Cui, G., Lee, J. S., Kim, S. J., Nama, H., Cha, G. S., & Kim, H. D. (1998). Potentiometric pCO2 sensor using polyaniline-coated pH-sensitive electrodes. Analyst (London), 123, 1855–1859. doi:10.1039/a802872i.

    Article  CAS  Google Scholar 

  • Datta, A. K. (1992). Sensors and food processing operations. In Y. H. Hui (Ed.), Encyclopedia of food science and technology (pp. 2327–2333). New York: Wiley.

    Google Scholar 

  • Diagne, E. H. A., & Lumbreras, M. (2001). Elaboration and characterization of tin oxide–lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique. Sensors and Actuators. B, Chemical, 78, 98–105. doi:10.1016/S0925-4005(01)00797-3.

    Article  Google Scholar 

  • Dickinson, T. A., White, J., Kauer, J. S., & Walt, D. R. (1998). Current trends in artificial-nose technology. Trends in Biotechnology, 16(6), 250–258. doi:10.1016/S0167-7799(98)01185-8.

    Article  CAS  Google Scholar 

  • Dieckmann, M., & Buchholz, R. (1999). Apparatus for measuring the partial pressure of gases dissolved in liquids US Patent 6003362.

  • Frost & Sullivan (2000). World flow sensor markets. Report 7261–32. London, UK. Frost and Sullivan Consulting Company.

  • Haeusler, A., & Meyer, J. (1996). A novel thick film conductive type carbon dioxide sensor. Sensors and Actuators. B, Chemical, 34(1–3), 388–395. doi:10.1016/S0925-4005(96)01847-3.

    Article  Google Scholar 

  • Herber, S., Bomer, J., Olthuis, W., Bergveld, P., & Berg, A. V. (2005). A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor. Biomed Microdevices, 7(3), 197–204. doi:10.1007/s10544-005-3026-5.

    Article  CAS  Google Scholar 

  • Hooker, S. A. (2002). Nanotechnology advantages applied to gas sensor development. The Nanoparticles 2002 Conference Proceedings. Norwalk, CT: Business Communications Company.

    Google Scholar 

  • Irimia-Vladu, M., & Fergus, J. W. (2006). Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synthetic Metals, 156, 1401–1407. doi:10.1016/j.synthmet.2006.11.005.

    Article  CAS  Google Scholar 

  • Ishihara, T., Kometani, K., Hashida, M., & Takita, Y. (1991). Application of mixed oxide capacitor to the selective carbon dioxide sensor. Journal of the Electrochemical Society, 138(1), 173–176. doi:10.1149/1.2085530.

    Article  CAS  Google Scholar 

  • Jasinski, G., Jasinski, P., Chachulski, B., & Nowakowski, A. (2006). Electrocatalytic gas sensors based on Nasicon and Lisicon. Materials Science—Poland, 24(1), 261–267.

    CAS  Google Scholar 

  • Jayas, D. S., Irvine, D. A., Mazza, G., & Jeyamkondan, S. (2001). Evaluation of a computer-controlled ventilation system for a potato storage facility. Canadian Biosystems Engineering, 43(5), 5–12.

    Google Scholar 

  • Kaneyasu, K., Otsuka, K., Setoguchi, Y., Sonoda, S., Nakahara, T., & Aso, I. (2000). A carbon dioxide gas sensor based on solid electrolyte based on air quality control. Sensors and Actuators. B, Chemical, 66, 102–106. doi:10.1016/S0925-4005(99)00411-6.

    Article  Google Scholar 

  • Karasek, F. W., & Clement, R. E. (1988). Basic gas chromatography–mass spectrometry: Principles and techniques. Amsterdam: Elsevier Science.

    Google Scholar 

  • Kim, D., Yoon, J., Park, H., & Kim, K. (2000). CO2 sensing of SnO2 thick film by coating lanthanum oxide. Sensors and Actuators. B, Chemical, 62(1), 61–66. doi:10.1016/S0925-4005(99)00305-6.

    Article  Google Scholar 

  • Kinkade, B. R. (2000). Bringing nondispersive IR spectroscopic gas sensors to the mass market. Newton, MA: Sensors Magazine.

    Google Scholar 

  • Lee, D., Choi, S., & Lee, K. (1995). Carbon dioxide sensor using NASICON prepared by the sol–gel method. Sensors and Actuators. B, Chemical, 24, 607–609. doi:10.1016/0925-4005(95)85133-X.

    Article  Google Scholar 

  • Lee, D., & Lee, D. (2001). Environmental gas sensors. IEEE Sensors Journal, 1(3), 214–224. doi:10.1109/JSEN.2001.954834.

    Article  CAS  Google Scholar 

  • Lees, M. (2003). Food authenticity and traceability. Cambridge, UK: Wood Head.

    Google Scholar 

  • Mahmoudi, B., Gabouze, N., Guerbous, L., Haddadi, M., Cheraga, H., & Beldjilali, K. (2007). Photoluminescence response of gas sensor based on CHx/porous silicon—effect of annealing treatment. Materials Science & Engineering. B, 138(3), 293–297. doi:10.1016/j.mseb.2007.01.033.

    Article  CAS  Google Scholar 

  • Mandayo, G. G., Gonzalez, F., Rivas, I., Averdi, I., & Herran, J. (2006). BaTiO3–CuO sputtered thin film for carbon dioxide detection. Sensors and Actuators. B, Chemical, 118(1–2), 305–310. doi:10.1016/j.snb.2006.04.056.

    Article  Google Scholar 

  • Marazuela, M. D., Moreno-Bondi, M. C., & Orellana, G. (1998). Luminescence lifetime quenching of a ruthenium (II) polypyridyl dye for optical sensing of carbon dioxide. Applied Spectroscopy, 52(10), 1314–1320. doi:10.1366/0003702981942825.

    Article  CAS  Google Scholar 

  • MNT (2006). Microtechnology nano network gas sensor road map. London, UK: The Council of Gas Detection and Environment Monitoring.

    Google Scholar 

  • Moseley, P. T. (1997). Solid state gas sensors. Measurement Science & Technology, 8, 223–237. doi:10.1088/0957-0233/8/3/003.

    Article  CAS  Google Scholar 

  • Muir, W. E., Waterer, D., & Sinha, R. N. (1985). Carbon dioxide as an early indicator of stored cereal and oilseed spoilage. Transactions of the ASAE, 28, 1673–1675.

    Google Scholar 

  • Mulrooney, J., Clifford, J., Fitzpatrick, C., & Lewis, E. (2006). Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 136, 104–110. doi:10.1016/j.sna.2006.11.016.

    Article  Google Scholar 

  • Nagel, D. J., & Smith, S. (2003). Nanotechnology enabled sensors: possibilities, realities and applications. http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=361237. Accessed 10 June 2006.

  • Nakamura, N., & Amao, Y. (2003). An optical sensor for CO2 using thymol blue and europium(III) complex composite film. Sensors and Actuators. B, Chemical, 82, 98–101. doi:10.1016/S0925-4005(03)00098-4.

    Article  Google Scholar 

  • Oho, T., Tonosaki, T., Isomura, K., & Ogura, K. (2002). A CO2 sensor operating under high humidity. Synthetic Metals, 522, 173–178.

    CAS  Google Scholar 

  • Pasierb, P., Komornicki, S., Kozinski, S., Gajerski, R., & Rekas, M. (2004). Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte. Sensors and Actuators. B, Chemical, 101, 47–56. doi:10.1016/j.snb.2004.02.021.

    Article  Google Scholar 

  • Rego, R., & Mendes, A. (2004). Carbon dioxide/methane gas sensor based on the permselectivity of polymeric membranes for biogas monitoring. Sensors and Actuators. B, Chemical, 103, 2–6. doi:10.1016/j.snb.2004.01.013.

    Article  Google Scholar 

  • Schaller, E., Bosset, J. O., & Escher, F. (1998). Electronic noses and their application to food. Lebensmittel-Wissenschaft und-Technologie, 31(4), 305–316.

    Article  CAS  Google Scholar 

  • Segawa, H., Ohnishi, E., Arai, Y., & Yoshida, K. (2003). Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye. Sensors and Actuators. B, Chemical, 94, 276–281. doi:10.1016/S0925-4005(03)00372-1.

    Article  Google Scholar 

  • Severinghaus, J. W., & Bradley, A. F. (1958). Electrodes for blood pO2 and pCO2 determination. Journal of Applied Physiology, 13, 515–520.

    CAS  Google Scholar 

  • Shimizu, Y., & Yamashita, N. (2000). Solid electrolyte CO2 sensor using NASICON and perovskite type oxide electrode. Sensors and Actuators. B, Chemical, 64, 102–106. doi:10.1016/S0925-4005(99)00491-8.

    Article  Google Scholar 

  • Singh, D., Muir, W. E., & Sinha, R. N. (1983). Finite element modelling of carbon dioxide diffusion in stored wheat. Canadian Agricultural Engineering, 25, 149–152.

    Google Scholar 

  • Sipior, J., Randers-Eichhorn, L., Lakowics, J. R., Carter, C. M., & Rao, G. (1996). Phase fluormetric optical carbon dioxide gas sensor for fermentation off-gas monitoring. Biotechnology Progress, 12, 266–271. doi:10.1021/bp960005t.

    Article  CAS  Google Scholar 

  • Skoog, D. A. (1985). Principles of instrumental analysis (5th ed.). Philadelphia, PA: Saunders.

    Google Scholar 

  • Smolander, M., Hurme, E., & Ahvenainen, R. (1997). Leak indicators for modified-atmosphere packages. Trends in Food Science & Technology, 8, 101–106. doi:10.1016/S0924-2244(97)01017-0.

    Article  CAS  Google Scholar 

  • Takeda, S. (1999). A new type of CO2 sensor built up with plasma polymerized poly aniline thin film. Thin Solid Films, 343–344, 313–316. doi:10.1016/S0040-6090(98)01591-0.

    Article  Google Scholar 

  • Tan, E. S., Slaughter, D. C., & Thompson, J. F. (2005). Freeze damage detection in oranges using gas sensors. Postharvest Biology and Technology, 35, 175–182. doi:10.1016/j.postharvbio.2004.07.008.

    Article  Google Scholar 

  • Tongola, B. J., Binag, C. A., & Sevilla, F. B. (2003). Surface and electrochemical studies of carbon dioxide probe based on conducting polypyrrole. Sensors and Actuators. B, Chemical, 93(1–3), 187–196. doi:10.1016/S0925-4005(03)00180-1.

    Article  Google Scholar 

  • USDA (1996). Using sensors to detect potentially hazardous atmospheres in production agriculture. Baltimore, MD: United States Department of Agriculture.

    Google Scholar 

  • Wang, L., & Kumar, R. V. (2003). A novel carbon dioxide gas sensor based on solid bielectrolyte. Sensors and Actuators. B, Chemical, 88, 292–299. doi:10.1016/S0925-4005(02)00372-6.

    Article  Google Scholar 

  • Ward, B. J., Liu, C. C., & Hunter, G. W. (2003). Novel processing of NASICON and sodium carbonate/barium carbonate thin and thick films for a CO2 microsensor. Journal of Materials Science, 38, 4289–4292. doi:10.1023/A:1026374830114.

    Article  CAS  Google Scholar 

  • Williams, D. E., & Pratt, K. F. E. (2000). Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sensors and Actuators. B, Chemical, 70, 214–221. doi:10.1016/S0925-4005(00)00572-4.

    Article  Google Scholar 

  • Yang, Y., & Liu, C. (2000). Development of a NASICON based amperometric carbon dioxide sensor. Sensors and Actuators. B, Chemical, 62, 30–34. doi:10.1016/S0925-4005(99)00370-6.

    Article  Google Scholar 

  • Zhu, Q., Qiu, F., Quan, Y., Sun, Y., Liu, S., & Zou, Z. (2005). Solid-electrolyte NASICON thick film CO2 sensor prepared on small-volume ceramic tube substrate. Materials Chemistry and Physics, 91, 338–342. doi:10.1016/j.matchemphys.2004.11.036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs program for funding this study. Dr. S. Sadistap contributed to this article when he was a Visiting Scientist from the Central Electronics Engineering Research Institute, Pilani-Rajasthan, India 333031 to the University of Manitoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Jayas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neethirajan, S., Jayas, D.S. & Sadistap, S. Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review. Food Bioprocess Technol 2, 115–121 (2009). https://doi.org/10.1007/s11947-008-0154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0154-y

Keywords

Navigation