Skip to main content
Log in

Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ultrafiltration process has been applied widely in food processing industry for the last 20 years due to its advantages over conventional separation processes such as gentle product treatment, high selectivity, and lower energy consumption. Ultrafiltration becomes an essential part in food technology as a tool for separation and concentration. However, membrane fouling compromises the benefits of ultrafiltration as fouling significantly reduces the performance and hence increases the cost of ultrafiltration. Recent advances in this area show the various intensive studies carried out to improve ultrafiltration, focusing on membrane fouling control and cleaning of fouled membranes. Thus, this paper reviews recent developments in ultrafiltration process, focusing on fouling mechanisms of ultrafiltration membranes as well as the latest techniques used to counter membrane fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afonso, M. D., & Bόrquez, R. (2002). Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination, 142(1), 29–45.

    Article  CAS  Google Scholar 

  • Afonso, M. D., Ferrer, J., & Bórquez, R. (2004). An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends in Food Science & Technology, 15(10), 506–512.

    Article  CAS  Google Scholar 

  • Aimar, P., Baklouti, S., & Sanchez, V. (1986). Membrane–solute interactions: influence on pure solvent transfer during ultrafiltration. Journal of Membrane Science, 29(2), 207–224.

    Article  CAS  Google Scholar 

  • Aimar, P., Howell, J. A., Clifton, M. J., & Sanchez, V. (1991). Concentration polarisation build-up in hollow fibers: a method of measurement and its modelling in ultrafiltration. Journal of Membrane Science, 59(1), 81–99.

    Article  CAS  Google Scholar 

  • Akoum, O., Jaffrin, M. Y., Ding, L. H., & Frappart, M. (2004). Treatment of dairy process waters using vibrating filtration system and NF and RO membranes. Journal of Membrane Science, 235, 111–122.

    Article  CAS  Google Scholar 

  • Akoum, O., Jaffrin, M. Y., & Ding, L. H. (2005). Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module. Journal of Membrane Science, 247(1–2), 211–220.

    Article  CAS  Google Scholar 

  • Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1–2), 4–28.

    Article  CAS  Google Scholar 

  • Alkhatim, H. S., Alcaina, M. I., Soriano, E., Iborra, M. I., Lora, J., & Arnal, J. (1998). Treatment of whey effluents from dairy industries by nanofiltration membranes. Desalination, 119(1–3), 177–183.

    Article  CAS  Google Scholar 

  • Argüello, M. A., Álvarez, S., Riera, F. A., & Álvarez, R. (2003). Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation. Journal of Membrane Science, 216, 121–134.

    Article  CAS  Google Scholar 

  • Asatekin, A., Kang, S., Elimelech, M., & Mayes, A. M. (2007). Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 298, 136–146.

    Article  CAS  Google Scholar 

  • Bacchin, P., Aimar, P., & Field, R. W. (2006). Critical and sustainable fluxes: theory, experiments and applications. Journal of Membrane Science, 281(1–2), 42–69.

    Article  CAS  Google Scholar 

  • Beier, S. P., & Jonsson, G. (2007). Separation of enzyme and yeast cells with a vibrating hollow fibre membrane module. Separation and Purification Technology, 53(1), 111–118.

    Article  CAS  Google Scholar 

  • Bellara, S. R., Cui, Z. F., & Pepper, D. S. (1996). Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes. Journal of Membrane Science, 121(2), 175–184.

    Article  CAS  Google Scholar 

  • Bellhouse, B. J., Costigan, G., Abhinava, K., & Merry, A. (2001). The performance of helical screw-thread inserts in tubular membranes. Separation and Purification Technology, 22–23, 89–113.

    Article  Google Scholar 

  • Bhave, R. R. (1991). Inorganic membranes: Synthesis, characteristics and applications. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Blatt, W., Dravid, A., Michaels, A. S., & Nelsen, L. (1970). In J. E. Flinn (Ed.), Membrane science and technology (pp. 47–91). New York: Plenum.

    Chapter  Google Scholar 

  • Brans, G., Schroën, C. G. P. H., van der Sman, R. G. M., & Boom, R. M. (2004). Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 243(1–2), 263–272.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, J., Shi, X., & Ren, Z. (2006). Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 253(4), 2003–2010.

    Article  CAS  Google Scholar 

  • Cassano, A., Donato, L., Conidi, C., & Drioli, E. (2008). Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innovative Food Science & Emerging Technologies, 9(4), 556–562.

    Article  CAS  Google Scholar 

  • Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P., Chaplain-Derouiniot, M., & Guerard, F. (2009). Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: application to the refining of bioactive peptidic fractions. Separation and Purification Technology, 66(3), 463–471.

    Article  CAS  Google Scholar 

  • Cheryan, M. (1998). Ultrafiltration and microfiltration handbook (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Chiang, Y.-C., Chang, Y., Higuchi, A., Chen, W.-Y., & Ruaan, R.-C. (2009). Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. Journal of Membrane Science, 339(1–2), 151–159.

    Article  CAS  Google Scholar 

  • Chilcott, T. C., Chan, M., Gaedt, L., Nantawisarakul, T., Fane, A. G., Coster, H. G. L., (2002) Electrical impedance spectroscopy characterization of conducting membranes I. Theory. Journal of Membrane Science, 195(2), 153–167.

    Google Scholar 

  • Chiu, T. Y., Lara Dominguez, M. V., & James, A. E. (2006). Critical flux and rejection behaviour of non-circular-channelled membranes: influence of some operating conditions. Separation and Purification Technology, 50(2), 212–219.

    Article  CAS  Google Scholar 

  • Clifton, M. J., Abidine, N., Aptel, P., & Sanchez, V. (1984). Growth of the polarization layer in ultrafiltration with hollow-fibre membranes. Journal of Membrane Science, 21(3), 233–245.

    Article  CAS  Google Scholar 

  • Crozes, G. F., Jacangelo, J. G., Anselme, C., & Laîné, J. M. (1997). Impact of ultrafiltration operating conditions on membrane irreversible fouling. Journal of Membrane Science, 124(1), 63–76.

    Article  CAS  Google Scholar 

  • Cui, Z. F., & Wright, K. I. T. (1994). Gas–liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions. Journal of Membrane Science, 90(1–2), 183–189.

    Article  CAS  Google Scholar 

  • Cui, Z. F., & Wright, K. I. T. (1996). Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism. Journal of Membrane Science, 117(1–2), 109–116.

    Article  CAS  Google Scholar 

  • Daufin, G., Escudier, J. P., Carrère, H., Bérot, S., Fillaudeau, L., & Decloux, M. (2001). Recent and emerging applications of membrane processes in the food and dairy industry. Food and Bioproducts Processing, 79(2), 89–102.

    Article  CAS  Google Scholar 

  • de Barros, S. T. D., Andrade, C. M. G., Mendes, E. S., & Peres, L. (2003). Study of fouling mechanism in pineapple juice clarification by ultrafiltration. Journal of Membrane Science, 215(1–2), 213–224.

    Google Scholar 

  • Ducom, G., & Cabassud, C. (2003). Possible effects of air sparging for nanofiltration of salted solutions. Desalination, 156(1–3), 267–274.

    Article  CAS  Google Scholar 

  • Echavarria, A. P., Torras, C., Pagan, J., & Ibarz, A. (2011). Fruit juice processing and membrane technology application. Food Engineering Reviews, 3(3–4), 136–158.

    Article  CAS  Google Scholar 

  • Enevoldsen, A. D., Hansen, E. B., & Jonsson, G. (2007). Electro-ultrafiltration of industrial enzyme solutions. Journal of Membrane Science, 299(1–2), 28–37.

    Article  CAS  Google Scholar 

  • Erdem, I., Çiftçioglu, M., & Harsa, S. (2006). Separation of whey components by using ceramic composite membranes. Desalination, 189(1–3), 87–91.

    Article  CAS  Google Scholar 

  • Eykamp, W. (1995). Microfiltration and ultrafiltration. In R. D. Noble & S. A. Stern (Eds.), Membrane separations technology: Principles and applications (p. 30). Amsterdam: Elsevier.

    Google Scholar 

  • Fox, P. F., McSweeney, P., Cogan, T. M., & Guinee, T. P. (2004). Application of membrane technology to cheese production. Cheese: major cheese groups (3rd ed., pp. 261–286). vol. 2.

    Google Scholar 

  • Gaedt, L., Chilcott, T. C., Chan, M., Nantawisarakul, T., Fane, A. G., Coster, H. G. L. (2002) Electrical impedance spectroscopy characterization of conducting membranes II. Experimental. Journal of Membrane Science, 195(2), 169–180.

    Google Scholar 

  • Galaverna, G., Di Silvestro, G., Cassano, A., Sforza, S., Dossena, A., Drioli, E., et al. (2008). A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chemistry, 106(3), 1021–1030.

    Article  CAS  Google Scholar 

  • Gésan, G., Daufin, G., Merin, U., Labbé, J. P., & Quémerais, A. (1993). Fouling during constant flux crossflow microfiltration of pretreated whey. Influence of transmembrane pressure gradient. Journal of Membrane Science, 80(1), 131–145.

    Google Scholar 

  • Ghosh, R. (2006). Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: role of module design. Journal of Membrane Science, 274(1–2), 73–82.

    Article  CAS  Google Scholar 

  • Goosen, M. F. A., Sablani, S. S., Al-Hinai, H., Jackson, D., Al-Obeidani, S., & Al-Belushi, R. (2004). Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separation Science and Technology, 39(10), 2261–2298.

    Article  CAS  Google Scholar 

  • Hamachi, M., Meitton-Peuchot, M. (1999). Experimental investigation of cake characteristics in crossflow microfiltration. Chemical Engineering Science, 54(18), 4023–4030.

    Google Scholar 

  • Hatakeyama, E. S., Ju, H., Gabriel, C. J., Lohr, J. L., Bara, J. E., Noble, R. D., et al. (2009). New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers. Journal of Membrane Science, 330(1–2), 104–116.

    Article  CAS  Google Scholar 

  • Iritani, E., Mukai, Y., & Murase, T. (1997). Separation of binary protein mixtures by ultrafiltration. Filtration & Separation, 34(9), 967–973.

    Article  CAS  Google Scholar 

  • Jaffrin, M. Y. (2008). Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems. Journal of Membrane Science, 324(1–2), 7–25.

    Article  CAS  Google Scholar 

  • Joseph, D. H., Jr., Lee, F. L., & Kuo, C. H. A. (1977). A solid/liquid separation process based on cross flow and electrofiltration. AICHE Journal, 23(6), 851–859.

    Article  Google Scholar 

  • Ju, H., McCloskey, B. D., Sagle, A. C., Kusuma, V. A., & Freeman, B. D. (2009). Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. Journal of Membrane Science, 330(1–2), 180–188.

    Article  CAS  Google Scholar 

  • Kaeselev, B., Pieracci, J., & Belfort, G. (2001). Photoinduced grafting of ultrafiltration membranes: comparison of poly(ether sulfone) and poly(sulfone). Journal of Membrane Science, 194(2), 245–261.

    Article  CAS  Google Scholar 

  • Kazemimoghadam, M., & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry. Desalination, 204(1–3), 213–218.

    Article  CAS  Google Scholar 

  • Kertész, S., Szép, A., Csanádi, J., Szabó, G., & Hodúr, C. (2010). Comparison between stirred and vibrated UF modules. Desalination and Water Treatment, 14(2010), 240–246.

    Google Scholar 

  • Kimura, K., Amy, G., Drewes, J., & Watanabe, Y. (2003). Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. Journal of Membrane Science, 221(1–2), 89–101.

    Article  CAS  Google Scholar 

  • Krstic, D. M., Koris, A. K., & Tekic, M. N. (2006). Do static turbulence promoters have potential in cross-flow membrane filtration applications? Desalination, 191(1–3), 371–375.

    Article  CAS  Google Scholar 

  • Krstic, D. M., Antov, M. G., Pericin, D. M., Höflinger, W., & Tekic, M. N. (2007). The possibility for improvement of ceramic membrane ultrafiltration of an enzyme solution. Biochemical Engineering Journal, 33(1), 10–15.

    Article  CAS  Google Scholar 

  • Lamminen, M. O., Walker, H. W., & Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223.

    Article  CAS  Google Scholar 

  • Li, Q. Y., Ghosh, R., Bellara, S. R., Cui, Z. F., & Pepper, D. S. (1998). Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules. Separation and Purification Technology, 14(1–3), 79–83.

    Google Scholar 

  • Li, Z.-Y., H-Kittikun, A., & Youravong, W. (2008). Separation of protease from yellowfin tuna spleen extract by ultrafiltration: effect of hydrodynamics and gas sparging on flux enhancement and selectivity. Journal of Membrane Science, 311(1–2), 104–111.

    Article  CAS  Google Scholar 

  • Lim, Y. P., & Mohammad, A. W. (2010). Effect of solution chemistry on flux decline during high concentration protein ultrafiltration through a hydrophilic membrane. Chemical Engineering Journal, 159, 91–97.

    Article  CAS  Google Scholar 

  • Lim, Y. P., & Mohammad, A. W. (2011). Physicochemical properties of mammalian gelatin in relation to membrane process requirement. Food and Bioprocess Technology, 4(2), 304–311.

    Article  CAS  Google Scholar 

  • Lin, S.-Y., & Suen, S.-Y. (2002). Protein separation using plate-and-frame modules with ion-exchange membranes. Journal of Membrane Science, 204(1–2), 37–51.

    Article  CAS  Google Scholar 

  • Lo, Y. M., Cao, D., Argin-Soysal, S., Wang, J., & Hahm, T.-S. (2005). Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Bioresource Technology, 96(6), 687–698.

    Article  CAS  Google Scholar 

  • Luo, M.-L., Zhao, J.-Q., Tang, W., & Pu, C.-S. (2005). Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science, 249(1–4), 76–84.

    Article  CAS  Google Scholar 

  • Ma, X., Su, Y., Sun, Q., Wang, Y., & Jiang, Z. (2007). Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol). Journal of Membrane Science, 300(1–2), 71–78.

    Article  CAS  Google Scholar 

  • Mairal, A. P., Greenberg, A. R., Krantz, W. B. (2000). Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectrometry. Desalination, 130(1), 45–60.

    Google Scholar 

  • Makardij, A., Chen, X. D., & Farid, M. M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Food and Bioproducts Processing, 77(2), 107–113.

    Article  Google Scholar 

  • Mänttäri, M., & Nyström, M. (2000). Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry. Journal of Membrane Science, 170(2), 257–273.

    Article  Google Scholar 

  • Mänttäri, M., Puro, L., Nuortila-Jokinen, J., & Nyström, M. (2000). Fouling effects of polysaccharides and humic acid in nanofiltration. Journal of Membrane Science, 165(1), 1–17.

    Article  Google Scholar 

  • Martine, M., Pierre, A., & Victor, S. (1991). Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling. Biotechnology and Bioengineering, 38(5), 528–534.

    Article  Google Scholar 

  • Marshall, A. D., Munro, P. A., Tragardh, G. (1993). The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review. Desalination, 91(1), 65–108.

    Google Scholar 

  • Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.-M., Syzaret, P.-Y., & Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220.

    Article  CAS  Google Scholar 

  • Metsämuuronen, S., Howell, J., & Nyström, M. (2002). Critical flux in ultrafiltration of myoglobin and baker's yeast. Journal of Membrane Science, 196(1), 13–25.

    Article  Google Scholar 

  • Moresi, M., & Lo Presti, S. (2003). Present and potential applications of membrane processing in the food industry. Italian Journal of Food Science, 15, 3–34.

    CAS  Google Scholar 

  • Muthukumaran, S., Kentish, S. E., Ashokkumar, M., & Stevens, G. W. (2005). Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. Journal of Membrane Science, 258(1–2), 106–114.

    Article  CAS  Google Scholar 

  • Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: the influence of operating conditions. Journal of Food Engineering, 81(2), 364–373.

    Article  Google Scholar 

  • Nakao, S., Osada, H., Kurata, H., Tsuru, T., & Kimura, S. (1988). Separation of proteins by charged ultrafiltration membranes. Desalination, 70(1–3), 191–205.

    Article  CAS  Google Scholar 

  • Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1–3), 313–322.

    Article  CAS  Google Scholar 

  • Nyström, M., Pihlajamäki, A., Liikanen, R., & Mänttäri, M. (2003). Influence of process conditions and membrane/particle interaction in NF of wastewaters. Desalination, 156(1–3), 379–387.

    Article  Google Scholar 

  • Oussedik, S., Belhocine, D., Grib, H., Lounici, H., Piron, D. L., & Mameri, N. (2000). Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina. Desalination, 127(1), 59–68.

    Article  CAS  Google Scholar 

  • Petrus, H. B., Li, H., Chen, V., & Norazman, N. (2008). Enzymatic cleaning of ultrafiltration membranes fouled by protein mixture solutions. Journal of Membrane Science, 325, p783–p792.

    Article  CAS  Google Scholar 

  • Porter, M. C. (1972). Concentration polarization with membrane ultrafiltration. Product R&D, 11(3), 234–248.

    CAS  Google Scholar 

  • Pouliot, Y. (2008). Membrane processes in dairy technology—from a simple idea to worldwide panacea. International Dairy Journal, 18(7), 735–740.

    Article  CAS  Google Scholar 

  • Radovich, J. M., & Behnam, B. (1983). Concentration ultrafiltration and diafiltration of albumin with an electric field. Separation Science and Technology, 18(3), 215–222.

    Article  CAS  Google Scholar 

  • Rahimpour, A. (2011). Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: ultrafiltration and nanofiltration performance. Korean Journal of Chemical Engineering, 28(1), 261–266.

    Article  CAS  Google Scholar 

  • Rahimpour, A., Madaeni, S. S., Taheri, A. H., & Mansourpanah, Y. (2008). Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 313(1–2), 158–169.

    Article  CAS  Google Scholar 

  • Razmjou, A., Mansouri, J., & Chen, V. (2011). The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 378(1–2), 73–84.

    Article  CAS  Google Scholar 

  • Redkar, S., Kuberkar, V., & Davis, R. H. (1996). Modeling of concentration polarization and depolarization with high-frequency backpulsing. Journal of Membrane Science, 121(2), 229–242.

    Article  CAS  Google Scholar 

  • Robinson, C. W., Siegel, M. H., Condemine, A., Fee, C., Fahidy, T. Z., & Glick, B. R. (1993). Pulsed-electric-field crossflow ultrafiltration of bovine serum albumin. Journal of Membrane Science, 80(1), 209–220.

    Article  CAS  Google Scholar 

  • Rosenberg, M. (1995). Current and future applications for membrane processes in the dairy industry. Trends in Food Science & Technology, 6(1), 12–19.

    Article  CAS  Google Scholar 

  • Sablani, S. S., Goosen, M. F. A., Al-Belushi, R., & Wilf, M. (2001). Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 141(3), 269–289.

    Article  CAS  Google Scholar 

  • Sarkar, B., DasGupta, S., & De, S. (2008). Cross-flow electro-ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice. Journal of Food Engineering, 89(2), 241–245.

    Article  Google Scholar 

  • Sarkar, B., Pal, S., Ghosh, T. B., De, S., & DasGupta, S. (2008). A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition. Journal of Membrane Science, 311(1–2), 112–120.

    Article  CAS  Google Scholar 

  • Saxena, A., Tripathi, B. P., Kumar, M., & Shahi, V. K. (2009). Membrane-based techniques for the separation and purification of proteins: an overview. Advances in Colloid and Interface Science, 145(1–2), 1–22.

    Article  CAS  Google Scholar 

  • Seung Yun, L., Hee Jin, K., Rajkumar, P., Se Joon, I., Jong Hak, K., & Byoung Ryul, M. (2007). Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polymers for Advanced Technologies, 18(7), 562–568.

    Article  CAS  Google Scholar 

  • Shah, T. N., Foley, H. C., & Zydney, A. L. (2007). Development and characterization of nanoporous carbon membranes for protein ultrafiltration. Journal of Membrane Science, 295(1–2), 40–49.

    Article  CAS  Google Scholar 

  • Shen, J-n, Li, D-d, Jiang, F-y, Qiu, J-h, & Gao, C-j. (2009). Purification and concentration of collagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrile blend. Separation and Purification Technology, 66(2), 257–262.

    Article  CAS  Google Scholar 

  • Song, W., Ravindran, V., Koel, B. E., & Pirbazari, M. (2004). Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. Journal of Membrane Science, 241(1), 143–160.

    Article  CAS  Google Scholar 

  • Stoller, M., & Chianese, A. (2006). Optimization of membrane batch processes by means of the critical flux theory. Desalination, 191(1–3), 62–70.

    Article  CAS  Google Scholar 

  • Su, Y.-L., Li, C., Zhao, W., Shi, Q., Wang, H., Jiang, Z., et al. (2008). Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. Journal of Membrane Science, 322(1), 171–177.

    Article  CAS  Google Scholar 

  • Su, Y.-L., Cheng, W., Li, C., & Jiang, Z. (2009). Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. Journal of Membrane Science, 329(1–2), 246–252.

    Article  CAS  Google Scholar 

  • Sur, H. W., & Cui, Z. F. (2005). Enhancement of microfiltration of yeast suspensions using gas sparging—effect of feed conditions. Separation and Purification Technology, 41(3), 313–319.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1988). Ultrasound: its chemical, physical, and biological effects. New York: VCH.

    Google Scholar 

  • Sutherland, K. (2004). Profile of the international membrane industry: market prospect to 2008 (3rd ed.). Oxford: Elsevier.

    Google Scholar 

  • Taniguchi, M., & Belfort, G. (2004). Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. Journal of Membrane Science, 231(1–2), 147–157.

    Article  CAS  Google Scholar 

  • Teng, M.-Y., Lin, S.-H., & Juang, R.-S. (2006). Effect of ultrasound on the separation of binary protein mixtures by cross-flow ultrafiltration. Desalination, 200(1–3), 280–282.

    Article  CAS  Google Scholar 

  • Timmer, J. M. K., & Van der Horst, H. C. (1998). Whey processing and separation technology: state-of-the-art and new developments. Whey: Bulletin 9804 (pp. 40–65). Brussels, Belgium: International Dairy Federation.

    Google Scholar 

  • Tsagaraki, E. V., & Lazarides, H. N. (2011). Fouling analysis and performance of tubular ultrafiltration on pretreated olive mill waste water. Food and Bioprocess Technology, in press.

  • Van der Bruggen, B., Mänttäri, M., & Nyström, M. (2008). Drawbacks of applying nanofiltration and how to avoid them: a review. Separation and Purification Technology, 63(2), 251–263.

    Article  CAS  Google Scholar 

  • van Reis, R., Brake, J. M., Charkoudian, J., Burns, D. B., & Zydney, A. L. (1999). High-performance tangential flow filtration using charged membranes. Journal of Membrane Science, 159(1–2), 133–142.

    Article  Google Scholar 

  • Vladisavljevic, G. T., Vukosavljevic, P., & Bukvic, B. (2003). Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering, 60(3), 241–247.

    Article  Google Scholar 

  • Wakeman, R. J., & Williams, C. J. (2002). Additional techniques to improve microfiltration. Separation and Purification Technology, 26(1), 3–18.

    Article  CAS  Google Scholar 

  • Weigert, T., Altmann, J., & Ripperger, S. (1999). Crossflow electrofiltration in pilot scale. Journal of Membrane Science, 159(1–2), 253–262.

    Article  CAS  Google Scholar 

  • Williams, C., & Wakeman, R. (2000). Membrane fouling and alternative techniques for its alleviation. Membrane Technology, 2000(124), 4–10.

    Article  Google Scholar 

  • Yamagishi, H., Crivello, J. V., & Belfort, G. (1995). Evaluation of photochemically modified poly (arylsulfone) ultrafiltration membranes. Journal of Membrane Science, 105(3), 249–259.

    Article  CAS  Google Scholar 

  • Youravong, W., Lewis, M. J., & Grandison, A. S. (2003). Critical flux in ultrafiltration of skimmed milk. Food and Bioproducts Processing, 81(4), 303–308.

    Article  CAS  Google Scholar 

  • Zhao, W., Su, Y., Li, C., Shi, Q., Ning, X., & Jiang, Z. (2008). Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science, 318(1–2), 405–412.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial grant funded by Universiti Kebangsaan Malaysia via grants UKM-GUP-KPB-08-32-129 and TF0206A084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Wahab Mohammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, A.W., Ng, C.Y., Lim, Y.P. et al. Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food Bioprocess Technol 5, 1143–1156 (2012). https://doi.org/10.1007/s11947-012-0806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0806-9

Keywords

Navigation