Skip to main content
Log in

Apples Nutraceutic Properties Evaluation Through a Visible and Near-Infrared Portable System

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Non-destructive and rapid tools are required for predicting the optimum harvest window and for monitoring fruit quality during postharvest period. This study tested a portable, experimental visible/near-infrared (vis/NIR) spectrophotometer, more versatile and handy than traditional vis/NIR instruments, to measure phytonutrients active in human health and important in fruit storability. Parameters determining sensorial and quality properties of the fruit were also analyzed. The vis/NIR measurement was carried out in field using apples of “Golden Delicious” and “Stark Red Delicious” on tree. Calibration models were developed using PLS regression based on second derivative spectra. For “Golden Delicious” apple, the cross-validation R 2 for soluble solids content (SSC), chlorophyll, titratable acidity (TA), flesh firmness, total phenols, carotenoids, and ascorbic acid were 0.72, 0.86, 0.52, 0.44, 0.09, 0.77, and 0.50, respectively. The corresponding RMSECV were 0.78 °Brix, 0.50 nmol/cm2, 0.59 g/L, 6.08 N, 0.10 mg/g, 0.08 nmol/cm2, and 0.83 mg/100 g, respectively. For “Stark Red Delicious” similar calibration statistics were found for SSC, TA, flesh firmness, chlorophyll, and ascorbic acid content. A better calibration performance was achieved for total phenols, while for carotenoids it was less accurate. Cross-validation R 2 for “Stark Red Delicious” total anthocyanins, total flavonoids, and non-anthocyanic flavonoids were 0.67, 0.86, and 0.77, respectively. The corresponding RMSECV were 0.12, 0.14, and 0.15 mg/g, respectively. It was concluded that the portable vis/NIR instrument performed similarly to bench top or portable vis/NIR instruments reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Antonucci, F., Pallottino, F., Paglia, G., Palma, A., D’Aquino, S., & Menesatti, P. (2011). Non-destructive estimation of Mandarin maturity status through portable VIS-NIR spectrophotometer. Food and Bioprocess Technology, 4(5), 809–813.

    Article  Google Scholar 

  • Bobelyn, E., Serban, A. S., Nicu, M., Lammertyn, J., Nicolaï, B. M., & Saeys, W. (2010). Postharvest quality of apple predicted by NIR-spectroscopy: study of the effect of biological variability on spectra and model performance. Postharvest Biology and Technology, 55, 133–143.

    Article  CAS  Google Scholar 

  • Camps, C., & Christen, D. (2009). Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. Food Science and Technology, 42(6), 1125–1131.

    CAS  Google Scholar 

  • Camps, C., Guillermin, P., Mauget, J. C., & Bertrand, D. (2007). Discrimination of storage duration of apples stored in a cooled room and shelf-life by visible-near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 15(3), 169–177.

    Article  Google Scholar 

  • Clark, C. J., McGlone, V. A., & Jordan, R. B. (2003). Detection of brownheart in ‘braeburn’ apple by transmission NIR spectroscopy. Postharvest Biology and Technology, 28(1), 87–96.

    Article  Google Scholar 

  • Clark, C. J., McGlone, V. A., De Silva, H. N., Manning, M. A., Burdon, J., & Mowat, A. D. (2004). Prediction of storage disorders of kiwifruit (Actinidia chinensis) based on visible-NIR spectral characteristics. Postharvest Biology and Technology, 32(2), 147–158.

    Article  Google Scholar 

  • Dalla Valle, A. Z., Mignani, I., Spinardi, A., Galvano, F., & Ciappellano, S. (2007). The antioxidant profile of three different peaches cultivars (Prunus persica) and their short-term effect on antioxidant status in human. European Food Research and Technology, 225(2), 167–172.

    Article  Google Scholar 

  • Di Natale, C., Martinelli, E., Pennazza, G., Macagnano, A., Noferino, M., Costa, G., & D’Amico, A. (2002). Fusion of NIR spectroscopy and electronic nose data in apples and kiwi fruits quality estimation. Proc. 7th Italian Conference on Sensors and Microsystems. AISEM, Bologna, Italy.

  • Eccher Zerbini, P., Rizzolo, A., Brambilla, A., Cambiaghi, P., & Grassi, M. (2002). Loss of ascorbic acid during storage of Conference pears in relation to the appearance of brown heart. Journal of the Science of Food and Agriculture, 82(9), 1007–1013.

    Article  Google Scholar 

  • Fan, G., Zha, J., Du, R., & Gao, L. (2009). Determination of soluble solids and firmness of apples by Vis/NIR transmittance. Journal of Food Engineering, 93(4), 416–420.

    Article  Google Scholar 

  • Guidetti, R., Beghi, R., & Bodria, L. (2010). Evaluation of grape quality parameters by a simple Vis/NIR system. Transactions of the ASABE, 53(2), 477–484.

    CAS  Google Scholar 

  • Harker, F. R., Maindonald, J., Murray, S. H., Gunson, F. A., Hallett, I. C., & Walker, S. B. (2002). Sensory interpretation of instrumental measurements. 1: Texture of apple fruit. Postharvest Biology and Technology, 24(3), 225–239.

    Article  Google Scholar 

  • Iriti, M., Rossoni, M., Borgo, M., Ferrara, L., & Faoro, F. (2005). Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. Journal of Agricultural and Food Chemistry, 53(23), 9133–9139.

    Article  CAS  Google Scholar 

  • Jha, S. N., & Garg, R. (2010). Non-destructive prediction of quality of intact apple using near infrared spectroscopy. Journal of Food Science and Technology-Mysore, 47(2), 207–213.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Lu, R. (2007). Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images. Sensing & Instrumentation for Food Quality, 1(1), 19–27.

    Article  Google Scholar 

  • Mailer, R. J. (2004). Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 81(9), 823–827.

    Article  CAS  Google Scholar 

  • Manley, M., Joubert, E., Myburgh, L., Lotz, E., & Kidd, M. (2007). Prediction of soluble solids content and post-storage internal quality of Bulida apricots using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 3(15), 179–188.

    Article  Google Scholar 

  • McGoverin, C. M., Weeranantanaphan, J., Downey, G., & Manley, M. (2010). The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities. Journal of Near Infrared Spectroscopy, 18(2), 87–111.

    Article  CAS  Google Scholar 

  • Mehinagic, E., Royer, G., Bertrand, D., Symoneaux, R., Laurens, F., & Jourjon, F. (2003). Relationship between sensory analysis, penetrometry and visible–NIR spectroscopy of apples belonging to different cultivars. Food Quality and Preference, 14(5–6), 473–484.

    Article  Google Scholar 

  • Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314.

    Article  CAS  Google Scholar 

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. U. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106(1), 135–141.

    Article  CAS  Google Scholar 

  • Merzlyak, M. N., Solovchenko, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27(2), 197–211.

    Article  CAS  Google Scholar 

  • Moshou, D., Whalen, S., Strasser, R., Shennk, A., & Ramon, H. (2003). Apple mealiness detection using fluorescence and self-organising maps. Computers and Electronics in Agriculture, 40(1–3), 103–114.

    Article  Google Scholar 

  • Naes, T., Isaksson, T., Fearn, T., & Davies, A. M. C. (2000). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Pubblication.

    Google Scholar 

  • Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40(1), 1–6.

    Google Scholar 

  • Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). Nondestructive measurement of fruit and vegetables quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46(2), 99–108.

    Article  Google Scholar 

  • Nicolaï, B. M., Verlinden, B. E., Desmet, M., Saevels, S., Saeys, W., Theron, K., et al. (2008). Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biology and Technology, 47(1), 68–74.

    Article  Google Scholar 

  • Peirs, A., Scheerlinck, N., Touchant, K., & Nicolaï, B. M. (2002). Comparision of Fourier transform and dispersive near-infrared reflectancespectroscopy for apple measurements. Biosystems Engineering, 81(1), 305–311.

    Article  Google Scholar 

  • Peirs, A., Scheerlinck, N., & Nicolaï, B. M. (2003a). Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents. Postharvest Biology and Technology, 30, 233–248.

    Article  Google Scholar 

  • Peirs, A., Tirry, J., Verlinden, B., Darius, P., & Nicolaï, B. M. (2003b). Effect of biological variability on the robustness of NIR models for soluble solids content of apples. Postharvest Biology and Technology, 28, 269–280.

    Article  CAS  Google Scholar 

  • Peirs, A., Schenk, A., & Nicolaï, B. M. (2005). Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions. Postharvest Biology and Technology, 35(1), 1–13.

    Article  Google Scholar 

  • Quilitzsch, R., & Hoberg, E. (2003). Fast determination of apple quality by spectroscopy in the near infrared. Journal of Applied Botany, 77(5–6), 172–176.

    Google Scholar 

  • Sinelli, N., Spinardi, A., Di Egidio, V., Mignani, I., & Casiraghi, E. (2008). Evaluation of quality and nutraceutical content in blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biology and Technology, 50(1), 31–36.

    Article  CAS  Google Scholar 

  • Solovchenko, A. E., Chivkunova, O. B., Merzlyak, M. N., & Gudkovsky, V. A. (2005). Relationships between chlorophyll and carotenoid pigments during on- and off-tree ripening of apple fruit as revealed non-destructively with reflectance spectroscopy. Postharvest Biology and Technology, 38(1), 9–17.

    Article  CAS  Google Scholar 

  • Solovchenko, A. E., Avertcheva, O. V., & Merzlyak, M. N. (2006). Elevated sunlight promotes ripening-associated pigment changes in apple fruit. Postharvest Biology and Technology, 40(2), 183–189.

    Article  CAS  Google Scholar 

  • Tian, H., Ying, Y., Lu, H., Fu, X., & Yu, H. (2007). Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique. Journal of Zhejiang University—Science B, 8(2), 105–110. Publisher: Zhejiang University Press, co-published with Springer.

    Article  CAS  Google Scholar 

  • Veberic, R., Trobec, M., Herbinger, K., Hofer, M., Grill, D., & Stampar, F. (2005). Phenolic compounds in some apple (Malus domestica Borkh) cultivars of organic and integrated production. Journal of the Science of Food and Agriculture, 85(10), 1687–1694.

    Article  CAS  Google Scholar 

  • Veltman, R. H., Sanders, M. G., Persijn, S. T., Pemppelenbos, H. W., & Oosterhaven, J. (1999). Decreased ascorbic acid levels and brown core development in pears (Pyrus communis L. cv. Conference). Physiologia Plantarum, 107(1), 39–45.

    Article  CAS  Google Scholar 

  • Veltman, R. H., Kho, R. M., van Schaik, A. C. R., Sanders, M. G., & Oosterhaven, J. (2000). Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biology and Technology, 19(2), 129–137.

    Article  CAS  Google Scholar 

  • Waterhouse, A. L. (2005). Determination of total phenolics. In R. E. Wrolstad (Ed.), Handbook of food analytical chemistry—pigments, colorants, flavors, texture and bioactive food components (pp. 463–464). New York: Wiley.

    Google Scholar 

  • Williams, P., & Norris, K. (2002). Near-infrared technology in the agricultural and food industries (2nd ed.). St. Paul: American Association of Cereal Chemist.

    Google Scholar 

  • Wulf, J. S., Herppich, W. B., Geyer, M., & Zude, M. (2003). Laser-induced fluorescence spectroscopy (LIFS)—a non-destructive method to detect tissue browning. Acta Horticulturae, 604, 653–655.

    Google Scholar 

  • Xia, J., Li, X., Li, P., Ma, Q., & Ding, X. (2007). Application of wavelet transform in the prediction of navel orange vitamin C content by near-infrared spectroscopy. Agricultural Sciences in China, 6, 1067.

    Article  CAS  Google Scholar 

  • Xiaoli, L., & Yong, H. (2006). Non-destructive measurement of acidity of Chinese bayberry using Vis/NIRS techniques. European Food Research and Technology, 223, 731–736.

    Article  Google Scholar 

  • Yan-de, L., & Yi-bin, Y. (2004). Measurement of sugar content in Fuji apples by FT-NIR spectroscopy. Journal of Zhejiang University—Science A, 5(6), 651–655. Zhejiang University Press, co-published with Springer.

    Article  Google Scholar 

  • Zhang, C., Shen, Y., Chen, J., Xiao, P., & Bao, J. (2008). Nondestructive prediction of total phenolics, flavonoid contents, and antioxidant capacity of rice grain using near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 18(56), 8268–8272.

    Article  Google Scholar 

  • Zude, M., Herold, B., Roger, J. M., Bellon-Maurel, V., & Landahl, S. (2006). Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. Journal of Food Engineering, 77(2), 254–260.

    Article  Google Scholar 

  • Zude-Sasse, M., Truppel, I., & Herold, B. (2002). An approach to non destructive apple fruit chlorophyll determination. Postharvest Biology and Technology, 25(2), 123–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study received financial support from Regione Lombardia as “INNOVÌ” research project and from Regione Lombardia and European Social Fund for a Post-doctoral Research Fellowship (“Progetto Dote Ricerca”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Beghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghi, R., Spinardi, A., Bodria, L. et al. Apples Nutraceutic Properties Evaluation Through a Visible and Near-Infrared Portable System. Food Bioprocess Technol 6, 2547–2554 (2013). https://doi.org/10.1007/s11947-012-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0824-7

Keywords

Navigation