Skip to main content

Advertisement

Log in

Comparison of Chemical Composition, Antioxidant and Antimicrobial Activity of Lavender (Lavandula angustifolia L.) Essential Oils Extracted by Supercritical CO2, Hexane and Hydrodistillation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effects of three different extraction methods, namely hydrodistillation, supercritical CO2 extraction (SCE) and hexane extraction on the yield, chemical composition and antimicrobial and antioxidant activities of lavender essential oil were investigated in this study. SCE produced a yield of 6.7 % (dry weight), which was comparable to that of solvent extraction (7.6 %), but significantly higher than that of hydrodistillation (4.6 %). The chemical composition of the oils showed considerable variations among the extraction methods, with linalool, linalyl acetate, camphor and borneol making up approximately 80 % of identified components in all extracts. Hexane extraction produced oils with the presence of waxes, colour pigments and albuminious materials with semi-solid consistency, while hydrodistillation extracts showed signs of thermal degradation. The SCE extracts had an aroma with the closest resemblance to the starting material, showing negligible thermal degradation, and exhibited significantly higher antioxidant activity than the hydrodistillation and hexane extracts. Oils produced by SCE and hydrodistillation had antimicrobial activities higher than hexane extracts. The results of this study demonstrate that SCE is a promising process for the extraction of lavender essential oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam, R. P. (2008). Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream: Allured.

    Google Scholar 

  • Ali, N. (1991). Applications of solvent extraction: a summary. Buletin FKKKSA, 5, 40–46.

    Google Scholar 

  • Bajpai, V. K., Yoon, J. I., & Kang, S. C. (2009). Antioxidant and antidermatophytic activities of essential oil and extracts of Magnolia liliflora Desr. Food and Chemical Toxicology, 47, 2606–2612.

    Article  CAS  Google Scholar 

  • Bezic, N., Skocibusic, M., Dunkic, V., & Radonic, A. (2003). Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytotherapy Research, 17, 1037–1040.

    Article  CAS  Google Scholar 

  • Bienvenu, F. (1995). Agriculture notes: lavender growing for oil production. State of Victoria, Department of Primary Industries, September, pp 1–4.

  • Carson, C. F., & Riley, T. V. (1995). Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. Journal of Applied Bacteriology, 78, 264–269.

    Article  CAS  Google Scholar 

  • Chemata, F., Lucchesi, M. E., Smadja, J., Favretto, L., Colnaghi, G., & Visinoni, F. (2006). Microwave accelerated steam distillation of essential oil from lavender: a rapid, clean and environmentally friendly approach. Analytica Chimica Acta, 555, 157–160.

    Article  Google Scholar 

  • CLSI (2009). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 8th edn. Wayne: The Clinical and Laboratory Standard Institute

  • Da Porto, C., Decorti, D., & Kikic, I. (2009). Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: comparison of three different extraction methods. Food Chemistry, 112, 1072–1078.

    Article  Google Scholar 

  • Danh, L. T., Mammucari, R., Truong, P., & Foster, N. R. (2009). Response surface method applied to supercritical carbon dioxide extraction of Vertiveria zizanioides essential oil. Chemical Engineering Journal, 155, 617–626.

    Article  CAS  Google Scholar 

  • Danh, L. T., Wijngaardena, C., Mammucaria, R., Cox, J., & Foster, N. R. (2011). Comparison of rosemary extraction by supercritical carbon dioxide and hydrodistillation. International Conference on Process Intensification for Sustainable Chemical Industries. Beijing, China, 27–28th June, 2011

  • Danh, L. T., Ngo, D. A. T., Le, T. N. H., Zhao, J., Mammucari, R., & Foster, N. R. (2012). Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2. Journal of Supercritical Fluids, 70, 27–34.

    Article  CAS  Google Scholar 

  • Denny, E. F. K. (1988). Steam distillation of the subcutaneous essential oils. Flavours and fragrances: a word perspective. Amsterdam: Elsevier Science.

    Google Scholar 

  • Fakhari, A. R., Salehi, P., & Heydari, R. (2005). Hydrodistillation-headspace solvent microextraction, a new method for analysis of the essential oil components of Lavandula angustifolia Mill. Journal of Chromatography, 1098, 14–18.

    Article  CAS  Google Scholar 

  • Gilles, M., Zhao, J., Min, A., & Agboola, S. (2010). Composition and antimicrobial activity of essential oils of three Australian eucalyptus species. Food Chemistry, 119, 731–737.

    Article  CAS  Google Scholar 

  • Gülcin, W., Şat, İ. G., Betdemir, Ş., Elmastaş, M., & Küfrevioglu, Ö. İ. (2004). Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87, 393–400.

    Article  Google Scholar 

  • Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124, 91–97.

    Article  CAS  Google Scholar 

  • Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985–990.

    Article  CAS  Google Scholar 

  • Hanamanthagouda, M. S., Kakkalameli, S. B., Naik, P. M., Nagella, P., Seetharamareddy, H. R., & Murthy, H. N. (2010). Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chemistry, 118, 836–839.

    Article  CAS  Google Scholar 

  • Hassiotis, C. N., Lazari, D. M., & Vlachonasios, K. E. (2010). The effects of habitat type and diurnal harvest of Lavandula angustifolia Mill. Fresenius Environmental Bulletin, 19, 1491–1498.

    Google Scholar 

  • Hui, L., He, L., Huan, L., Xiaolan, L., & Aiguo, Z. (2010). Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis rekated bacteria. African Journal of Microbiology Research, 4, 309–313.

    Google Scholar 

  • Koutsoumanis, K., Taoukis, P. S., Tassou, C. C., & Nychas, G.-J. (1998). Modelling the effectiveness of a natural antimicrobial on Salmonella enteritidis as a function of concentration, temperature and pH, using conductance measurements. Journal of Applied Microbiology, 84, 981–987.

    Article  CAS  Google Scholar 

  • Kunicka-Styczynska, A. M., Kalemba, D., & Sikora, D. (2009). Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. Journal of Applied Microbiology, 107, 1903–1911.

    Article  CAS  Google Scholar 

  • Moon T., Cavanagh H. M. A., Wilkinson J. M. (2004) Lavender as an antibacterial essential oil—are all lavenders equal? In AICA National Conference Abstracts. Queensland: Australian Infection Control Association. p. 46

  • NCCLS (2002). Performance standards for antimicrobial disc susceptibility tests. Approved Standard, M2-A7, Wayne: National Committee for Clinical Laboratory Standard.

  • Razazadeh, S. H., Baha-Aldini, B. Z. B. F., Vatanara, A., Behbahani, B., Rouholamini, N. A., Maleky-Doozzadeh, M., Yarigar-Ravesh, M., & Pirali, H. M. (2008). Comparison of super critical fluid extraction and hydrodistillation methods on lavanders essential oil composition and yield. Journal of Medicinal Plants, 7, 63–68.

    Google Scholar 

  • Reverchon, E., Porta, G. D., & Senatore, F. (1995). Supercritical CO2 extraction and fractionation of lavender essential oil and waxes. Journal of Agricultural and Food Chemistry, 43, 1654–1658.

    Article  CAS  Google Scholar 

  • Sahraoui, N., Vian, M. A., Bornard, I., Boutekedjiret, C., & Chemat, F. (2008). Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation. Journal of Chromatography A, 1210, 229–233.

    Article  CAS  Google Scholar 

  • Shellie, R., Mondello, L., Marriott, P., & Dugo, G. (2002). Characterization of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 970, 225–234.

    Article  CAS  Google Scholar 

  • Smith, P. A., Stewart, J., & Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important foodborne pathogens. Journal of Applied Microbiology, 26, 118–122.

    Article  Google Scholar 

  • Tassou, C. C., Drosinos, E. H., & Nychas, G.-J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 °C and 10 °C. Journal of Applied Bacteriology, 78, 593–600.

    Article  CAS  Google Scholar 

  • Topal, U., Sasaki, M., Goto, M., & Otles, S. (2008). Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. International Journal of Food Sciences and Nutrition, 59, 619–634.

    Article  CAS  Google Scholar 

  • WHO. (2007). Food safety and foodborne illness. http://www.who.int/mediacentre/factsheets/fs237/en/. Accessed on 17 March 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danh, L.T., Han, L.N., Triet, N.D.A. et al. Comparison of Chemical Composition, Antioxidant and Antimicrobial Activity of Lavender (Lavandula angustifolia L.) Essential Oils Extracted by Supercritical CO2, Hexane and Hydrodistillation. Food Bioprocess Technol 6, 3481–3489 (2013). https://doi.org/10.1007/s11947-012-1026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-1026-z

Keywords

Navigation