Skip to main content
Log in

High Performance of Asymmetric Alumina Hollow Fiber Membranes for the Clarification of Genipap (Genipa americana L.) Fruit Extract

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Membrane filtration processes represent a suitable alternative for fruit juice treatment, but the applied membrane should present high stability and permeability. Here, we propose the development and application of ceramic asymmetric hollow fiber membranes for genipap extract clarification. Genipap is an exotic fruit from Central and South America with considerable concentration of phenolic and iridoid compounds. The dual-layer ceramic hollow fiber membrane was fabricated by a single-step co-extrusion and co-sintering process. The developed hollow fibers presented the desired asymmetric structure, with an inner finger-like region that guaranteed a suitable permeate flux (191 L h−1 m−2 at 1 bar), while the outer sponge-like layer was responsible for solid retentions and for the membrane mechanical resistance. Reductions in turbidity, total polyphenol content, and genipin concentration were of 52, 17, and 4%, respectively. Mathematical modeling of the experimental flux decay showed that pore blocking was the main fouling mechanism during filtrations of genipap extract through the asymmetric hollow fibers. The presence of microchannels with larger pore size in the inner surface of the fiber probably mitigated cake formation. The increase in the transmembrane pressure from 1 to 2 bar did not improve the permeation flux through the membrane since the fouling layer resistance was considerably higher at 2 bar than at 1 bar. Thus, asymmetric ceramic hollow fibers are suggested for juice fruit clarification with improved permeate flux and clarification degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagci, P. O. (2014). Effective clarification of pomegranate juice: A comparative study of pretreatment methods and their influence on ultrafiltration flux. Journal of Food Engineering, 141, 58–64.

    Article  CAS  Google Scholar 

  • Bentes, A. D., & Mercadante, A. Z. (2014). Influence of the stage of ripeness on the composition of iridoids and phenolic compounds in genipap (Genipa americana L.). Journal of Agricultural and Food Chemistry, 62(44), 10800–10808.

    Article  CAS  Google Scholar 

  • Bessa, L. P., Terra, N. M., Cardoso, V. L., & Reis, M. H. M. (2017). Macro-porous dolomite hollow fibers sintered at different temperatures toward widened applications. Ceramics International, 43(18), 16283–16291.

    Article  CAS  Google Scholar 

  • Bindes, M. M. M., Cardoso, V. L., Reis, M. H. M., & Boffito, D. C. (2019). Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering, 241, 97–104.

    Article  CAS  Google Scholar 

  • Cai, M., Hou, W., Li, Z., Lv, Y., & Sun, P. (2017). Understanding nanofiltration fouling of phenolic compounds in model juice solution with two membranes. Food and Bioprocess Technology, 10(12), 2123–2131.

    Article  CAS  Google Scholar 

  • Chandini, S. K., Rao, L. J., & Subramanian, R. (2013). Membrane clarification of black tea extracts. Food and Bioprocess Technology, 6(8), 1926–1943.

    Article  CAS  Google Scholar 

  • Cimini, A., & Moresi, M. (2015). Pale lager clarification using novel ceramic hollow-fiber membranes and CO<inf>2</inf> backflush program. Food and Bioprocess Technology, 8(11), 2212–2224.

    Article  CAS  Google Scholar 

  • Costa, P. A., Ballus, C. A., Teixeira-Filho, J., & Godoy, H. T. (2010). Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Research International, 43(6), 1603–1606.

    Article  Google Scholar 

  • de Santana Magalhães, F., Cardoso, V. L., & Reis, M. H. M. (2018). Sequential process with bioadsorbents and microfiltration for clarification of pequi (Caryocar brasiliense Camb.) fruit extract. Food and Bioproducts Processing, 108, 105–116.

    Article  Google Scholar 

  • de Wit, P., van Daalen, F. S., & Benes, N. E. (2017). The mechanical strength of a ceramic porous hollow fiber. Journal of Membrane Science, 524, 721–728.

    Article  Google Scholar 

  • Domingues, R. C. C., Ramos, A. A., Cardoso, V. L., & Reis, M. H. M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121(1), 73–79.

    Article  CAS  Google Scholar 

  • Ennouri, M., Ben Hassan, I., Ben Hassen, H., Lafforgue, C., Schmitz, P., & Ayadi, A. (2015). Clarification of purple carrot juice: Analysis of the fouling mechanisms and evaluation of the juice quality. Journal of Food Science and Technology, 52(5), 2806–2814.

    Article  PubMed  Google Scholar 

  • García-Fernández, L., Wang, B., García-Payo, M. C., Li, K., & Khayet, M. (2017). Morphological design of alumina hollow fiber membranes for desalination by air gap membrane distillation. Desalination, 420, 226–240.

    Article  Google Scholar 

  • Gil, A. G., Reis, M. H. M., Chadwick, D., Wu, Z., & Li, K. (2015). A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation. International Journal of Hydrogen Energy, 40(8), 3249–3258.

    Article  Google Scholar 

  • Gulec, H. A., Bagci, P. O., & Bagci, U. (2017). Clarification of apple juice using polymeric ultrafiltration membranes: A comparative evaluation of membrane fouling and juice quality. Food and Bioprocess Technology, 10(5), 875–885.

    Article  CAS  Google Scholar 

  • Hatim, M. D. I., Tan, X. Y., Wu, Z. T., & Li, K. (2011). Pd/Al2O3 composite hollow fibre membranes: Effect of substrate resistances on H-2 permeation properties. Chemical Engineering Science, 66(6), 1150–1158.

    Article  Google Scholar 

  • Hermia, J. (1982). Constant pressure blocking filtration laws—application to power-law non-Newtonian fluids. Transactions. Institution of Chemical Engineers, 60(3), 183–187.

    CAS  Google Scholar 

  • Hubadillah, S. K., Othman, M. H. D., Matsuura, T., Rahman, M. A., Jaafar, J., Ismail, A. F., & Amin, S. Z. M. (2018). Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Separation and Purification Technology, 205, 22–31.

    Article  CAS  Google Scholar 

  • Jeon, S., Karkhanechi, H., Fang, L.-F., Cheng, L., Ono, T., Nakamura, R., & Matsuyama, H. (2018). Novel preparation and fundamental characterization of polyamide 6 self-supporting hollow fiber membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 546(Supplement C), 1–14.

    Article  CAS  Google Scholar 

  • Kingsbury, B. F. K., & Li, K. (2009). A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science, 328(1–2), 134–140.

    Article  CAS  Google Scholar 

  • Kumar, B., Smita, K., Cumbal, L., Camacho, J., Hernández-Gallegos, E., de Guadalupe Chávez-López, M., Grijalva, M., & Andrade, K. (2016). One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Materials Science and Engineering: C, 62, 725–731.

    Article  CAS  Google Scholar 

  • Lee, M., Wang, B., Wu, Z., & Li, K. (2015). Formation of micro-channels in ceramic membranes—Spatial structure, simulation, and potential use in water treatment. Journal of Membrane Science, 483, 1–14.

    Article  CAS  Google Scholar 

  • Lee, M., Wang, B., & Li, K. (2016). New designs of ceramic hollow fibres toward broadened applications. Journal of Membrane Science, 503, 48–58.

    Article  CAS  Google Scholar 

  • Liu, S., Li, K., & Hughes, R. (2003). Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceramics International, 29(8), 875–881.

    Article  CAS  Google Scholar 

  • Luyten, J., Buekenhoudt, A., Adriansens, W., Cooymans, J., Weyten, H., Servaes, F., & Leysen, R. (2000). Preparation of LaSrCoFeO3−x membranes. Solid State Ionics, 135(1), 637–642.

    Article  CAS  Google Scholar 

  • Machado, M. T. C., Mello, B. C. B. S., & Hubinger, M. D. (2015). Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 95, 304–312.

    Article  CAS  Google Scholar 

  • Mohammad, A. W., Ng, C. Y., Lim, Y. P., & Ng, G. H. (2012). Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food and Bioprocess Technology, 5(4), 1143–1156.

    Article  Google Scholar 

  • Nourbakhsh, H., Alemi, A., Emam-Djomeh, Z., & Mirsaeedghazi, H. (2014). Effect of processing parameters on fouling resistances during microfiltration of red plum and watermelon juices: A comparative study. Journal of Food Science and Technology, 51(1), 168–172.

    Article  CAS  PubMed  Google Scholar 

  • Omena, C. M. B., Valentim, I. B., Guedes, G. S., Rabelo, L. A., Mano, C. M., Bechara, E. J. H., Sawaya, A. C. H. F., Trevisan, M. T. S., da Costa, J. G., Ferreira, R. C. S., Sant'Ana, A. E. G., & Goulart, M. O. F. (2012). Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits: Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Research International, 49(1), 334–344.

    Article  CAS  Google Scholar 

  • Ono, M., Ishimatsu, N., Masuoka, C., Yoshimitsu, H., Tsuchihashi, R., Okawa, M., Kinjo, J., Ikeda, T., & Nohara, T. (2007). Three new monoterpenoids from the fruit of Genipa americana. Chemical & Pharmaceutical Bulletin, 55(4), 632–634.

    Article  CAS  Google Scholar 

  • Onsekizoglu, P. (2013). Production of high quality clarified pomegranate juice concentrate by membrane processes. Journal of Membrane Science, 442, 264–271. https://doi.org/10.1016/j.memsci.2013.03.061.

    Article  CAS  Google Scholar 

  • Onsekizoglu, P., Bahceci, K. S., & Acar, M. J. (2010). Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment. Journal of Membrane Science, 352(1–2), 160–165.

    Article  CAS  Google Scholar 

  • Ramos-de-la-Pena, A. M., Renard, C. M. G. C., Montanez, J. C., de la Luz Reyes-Vega, M., & Carlos Contreras-Esquivel, J. (2015). Ultrafiltration for genipin recovery technologies after ultrasonic treatment of genipap fruit. Biocatalysis and Agricultural Biotechnology, 4(1), 11–16.

    Article  Google Scholar 

  • Ramos-de-la-Pena, A. M., Renard, C., Montanez, J., Reyes-Vega, M. D., & Contreras-Esquivel, J. C. (2016). A review through recovery, purification and identification of genipin. Phytochemistry Reviews, 15(1), 37–49.

    Article  CAS  Google Scholar 

  • Reis, M. H. M., Da Silva, F. V., Andrade, C. M. G., Rezende, S. L., Wolf MacIel, M. R., & Bergamasco, R. (2009). Clarification and purification of aqueous stevia extract using membrane separation process. Journal of Food Process Engineering, 32(3), 338–354.

    Article  Google Scholar 

  • Renard, C. M. G. C. (2018). Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT, 93, 390–395.

    Article  CAS  Google Scholar 

  • Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1007, 72–80.

    Article  CAS  Google Scholar 

  • Silva, F. C., Rossi, D. A., Cardoso, V. L., & Reis, M. H. M. (2016). Stabilization of açaí (Euterpe oleracea mart.) juice by the microfiltration process. Acta Scientiarum - Technology, 38(1), 7–11.

    Article  Google Scholar 

  • Simone, S., Conidi, C., Ursino, C., Cassano, A., & Figoli, A. (2016). Clarification of orange press liquors by PVDF hollow Fiber membranes. Membranes, 6(1).

  • Singleton, V. L. (1985). Citation classic—Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 48, 18.

    Google Scholar 

  • Sousa, L. D. S., Cabral, B. V., Madrona, G. S., Cardoso, V. L., & Reis, M. H. M. (2016). Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Separation and Purification Technology, 168, 188–198.

    Article  CAS  Google Scholar 

  • Tan, X., Liu, S., & Li, K. (2001). Preparation and characterization of inorganic hollow fiber membranes. Journal of Membrane Science, 188(1), 87–95.

    Article  CAS  Google Scholar 

  • Tan, X. Y., Li, K., & Teo, W. K. (2005). Odor control using hollow fiber membrane modules. Aiche Journal, 51(5), 1367–1376.

    Article  CAS  Google Scholar 

  • Terra, N. M., Lemos, C. O. T., Da Silva, F. B., Cardoso, V. L., & Reis, M. H. M. (2016). Characterisation of asymmetric alumina hollow fibres: Application for hydrogen permeation in composite membranes. Brazilian Journal of Chemical Engineering, 33(3), 567–576.

    Article  CAS  Google Scholar 

  • Terra, N. M., Bessa, L. P., Cardoso, V. L., & Reis, M. H. M. (2018). Graphite coating on alumina substrate for the fabrication of hydrogen selective membranes. International Journal of Hydrogen Energy, 43(3), 1534–1544.

    Article  CAS  Google Scholar 

  • Todisco, S., Tallarico, P., & Gupta, B. B. (2002). Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innovative Food Science & Emerging Technologies, 3(3), 255–262.

    Article  CAS  Google Scholar 

  • Urošević, T., Povrenović, D., Vukosavljević, P., Urošević, I., & Stevanović, S. (2017). Recent developments in microfiltration and ultrafiltration of fruit juices. Food and Bioproducts Processing, 106, 147–161.

    Article  Google Scholar 

  • Vuong, Q. V., Golding, J. B., Stathopoulos, C. E., Nguyen, M. H., & Roach, P. D. (2011). Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Science, 34(21), 3099–3106.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z. T., Faiz, R., Li, T., Kingsbury, B. F. K., & Li, K. (2013). A controlled sintering process for more permeable ceramic hollow fibre membranes. Journal of Membrane Science, 446, 286–293.

    Article  CAS  Google Scholar 

  • Zhu, Z., Luo, X., Yin, F., Li, S., & He, J. (2018). Clarification of Jerusalem artichoke extract using ultra-filtration: Effect of membrane pore size and operation conditions. Food and Bioprocess Technology, 11(4), 864–873.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miria Hespanhol Miranda Reis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terra, N.M., Madrona, G.S., Ferreira, F.B. et al. High Performance of Asymmetric Alumina Hollow Fiber Membranes for the Clarification of Genipap (Genipa americana L.) Fruit Extract. Food Bioprocess Technol 12, 27–38 (2019). https://doi.org/10.1007/s11947-018-2185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2185-3

Keywords

Navigation