Skip to main content
Erschienen in: Journal of Coatings Technology and Research 4/2019

22.01.2019

Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties

verfasst von: Sara Fazli-Shokouhi, Farzad Nasirpouri, Maasoumeh Khatamian

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report on the anticorrosion and antifouling properties of epoxy-based polyaniline (PANI)–graphene oxide nanosheets (GONs) paint coatings. PANI-based nanocomposites with different fractions of GONs were synthesized by an in situ polymerization process. Well-dispersed GONs were prepared using a modified Hummers’ method in the presence of (NH4)2S2O8 as an effective oxidant. We employed a spontaneous in situ polymerization at a constant temperature of 0°C using an ultrasonic bath to produce homogenous PANI-GON nanocomposites as characterized by X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM) techniques. The nanocomposites were incorporated into an epoxy resin with different fractions to form epoxy/PANI-GON paint coatings. The epoxy/PANI-GON dip coated on a carbon steel (grade St-37) substrate exhibited significant improvement of the anticorrosion and antifouling properties. Epoxy-12 wt% PANI-GON coating revealed the highest corrosion resistance of 2.70 × 106 Ω cm2 after 192-h immersion in saline water measured by electrochemical impedance spectroscopy (EIS) technique. Such high corrosion resistance was attainable by inhibiting the diffusion process against the corrosive environment. Furthermore, higher protection against fouling was observed for epoxy 6 and 12 wt% PANI/GON as the most efficient antifouling composite coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koch, GH, Brongers, MP, Thompson, NG, Virmani, YP, Payer, JH, “Corrosion Cost and Preventive Strategies in the United States.” (2002) Koch, GH, Brongers, MP, Thompson, NG, Virmani, YP, Payer, JH, “Corrosion Cost and Preventive Strategies in the United States.” (2002)
2.
Zurück zum Zitat Ramón, JE, Gandía-Romero, JM, Valcuende, M, Bataller, R, “Integrated Sensor Network for Monitoring Steel Corrosion in Concrete Structures.” VITRUVIO-Int. J. Archit. Technol. Sustain., 1 (1) 65–79 (2016)CrossRef Ramón, JE, Gandía-Romero, JM, Valcuende, M, Bataller, R, “Integrated Sensor Network for Monitoring Steel Corrosion in Concrete Structures.” VITRUVIO-Int. J. Archit. Technol. Sustain., 1 (1) 65–79 (2016)CrossRef
3.
Zurück zum Zitat Böhm, S, “Graphene Against Corrosion.” Nat. Nanotechnol., 9 (10) 741–742 (2014)CrossRef Böhm, S, “Graphene Against Corrosion.” Nat. Nanotechnol., 9 (10) 741–742 (2014)CrossRef
4.
Zurück zum Zitat Rathish, RJ, Dorothy, R, Joany, R, Pandiarajan, M, “Corrosion Resistance of Nanoparticle-Incorporated Nano Coatings.” Eur. Chem. Bull., 2 (12) 965–970 (2013) Rathish, RJ, Dorothy, R, Joany, R, Pandiarajan, M, “Corrosion Resistance of Nanoparticle-Incorporated Nano Coatings.” Eur. Chem. Bull., 2 (12) 965–970 (2013)
5.
Zurück zum Zitat Zvonkina, I, Soucek, M, “Inorganic–Organic Hybrid Coatings: Common and New Approaches.” Curr. Opin. Chem. Eng., 11 123–127 (2016)CrossRef Zvonkina, I, Soucek, M, “Inorganic–Organic Hybrid Coatings: Common and New Approaches.” Curr. Opin. Chem. Eng., 11 123–127 (2016)CrossRef
6.
Zurück zum Zitat Montemor, M, “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances.” Surf. Coat. Technol., 258 17–37 (2014)CrossRef Montemor, M, “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances.” Surf. Coat. Technol., 258 17–37 (2014)CrossRef
7.
Zurück zum Zitat Nine, MJ, Cole, MA, Tran, DN, Losic, D, “Graphene: A Multipurpose Material for Protective Coatings.” J. Mater. Chem. A, 3 (24) 12580–12602 (2015)CrossRef Nine, MJ, Cole, MA, Tran, DN, Losic, D, “Graphene: A Multipurpose Material for Protective Coatings.” J. Mater. Chem. A, 3 (24) 12580–12602 (2015)CrossRef
8.
Zurück zum Zitat Hellio, C, Yebra, D, Advances in Marine Antifouling Coatings and Technologies. Elsevier, Amsterdam, 2009CrossRef Hellio, C, Yebra, D, Advances in Marine Antifouling Coatings and Technologies. Elsevier, Amsterdam, 2009CrossRef
9.
Zurück zum Zitat Nurioglu, AG, Esteves, ACC, “Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)CrossRef Nurioglu, AG, Esteves, ACC, “Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)CrossRef
10.
Zurück zum Zitat Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176 (2009)CrossRef Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176 (2009)CrossRef
11.
Zurück zum Zitat Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 (5696) 666–669 (2004)CrossRef Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 (5696) 666–669 (2004)CrossRef
12.
Zurück zum Zitat Martin-Gallego, M, Verdejo, R, Lopez-Manchado, M, Sangermano, M, “Epoxy-Graphene UV-Cured Nanocomposites.” Polymer, 52 (21) 4664–4669 (2011)CrossRef Martin-Gallego, M, Verdejo, R, Lopez-Manchado, M, Sangermano, M, “Epoxy-Graphene UV-Cured Nanocomposites.” Polymer, 52 (21) 4664–4669 (2011)CrossRef
13.
Zurück zum Zitat Wang, H, Hao, Q, Yang, X, Lu, L, Wang, X, “Effect of Graphene Oxide on the Properties of its Composite with Polyaniline.” ACS Appl. Mater. Interfaces, 2 (3) 821–828 (2010)CrossRef Wang, H, Hao, Q, Yang, X, Lu, L, Wang, X, “Effect of Graphene Oxide on the Properties of its Composite with Polyaniline.” ACS Appl. Mater. Interfaces, 2 (3) 821–828 (2010)CrossRef
14.
Zurück zum Zitat Zhang, WL, Liu, YD, Choi, HJ, “Fabrication of Semiconducting Graphene Oxide/Polyaniline Composite Particles and their Electrorheological Response Under an Applied Electric Field.” Carbon, 50 (1) 290–296 (2012)CrossRef Zhang, WL, Liu, YD, Choi, HJ, “Fabrication of Semiconducting Graphene Oxide/Polyaniline Composite Particles and their Electrorheological Response Under an Applied Electric Field.” Carbon, 50 (1) 290–296 (2012)CrossRef
15.
Zurück zum Zitat Nasrollahzadeh, M, Babaei, F, Fakhri, P, Jaleh, B, “Synthesis, Characterization, Structural, Optical Properties and Catalytic Activity of Reduced Graphene Oxide/Copper Nanocomposites.” RSC Adv., 5 (14) 10782–10789 (2015)CrossRef Nasrollahzadeh, M, Babaei, F, Fakhri, P, Jaleh, B, “Synthesis, Characterization, Structural, Optical Properties and Catalytic Activity of Reduced Graphene Oxide/Copper Nanocomposites.” RSC Adv., 5 (14) 10782–10789 (2015)CrossRef
16.
Zurück zum Zitat Huang, Y, Lin, C, “Polyaniline-Intercalated Graphene Oxide Sheet and its Transition to a Nanotube Through a Self-curling Process.” Polymer, 53 (5) 1079–1085 (2012)CrossRef Huang, Y, Lin, C, “Polyaniline-Intercalated Graphene Oxide Sheet and its Transition to a Nanotube Through a Self-curling Process.” Polymer, 53 (5) 1079–1085 (2012)CrossRef
17.
Zurück zum Zitat Huang, X, Qi, X, Boey, F, Zhang, H, “Graphene-Based Composites.” Chemical Society Reviews, 41 (2) 666–686 (2012)CrossRef Huang, X, Qi, X, Boey, F, Zhang, H, “Graphene-Based Composites.” Chemical Society Reviews, 41 (2) 666–686 (2012)CrossRef
18.
Zurück zum Zitat Zhu, Y, Murali, S, Cai, W, Li, X, Suk, JW, Potts, JR, Ruoff, RS, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Advanced Materials, 22 (35) 3906–3924 (2010)CrossRef Zhu, Y, Murali, S, Cai, W, Li, X, Suk, JW, Potts, JR, Ruoff, RS, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Advanced Materials, 22 (35) 3906–3924 (2010)CrossRef
19.
Zurück zum Zitat Pumera, M, “Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage.” The Chemical Record, 9 (4) 211–223 (2009)CrossRef Pumera, M, “Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage.” The Chemical Record, 9 (4) 211–223 (2009)CrossRef
20.
Zurück zum Zitat Wei, J, Vo, T, Inam, F, “Epoxy/Graphene Nanocomposites–Processing and Properties: A Review.” RSC Advances, 5 (90) 73510–73524 (2015)CrossRef Wei, J, Vo, T, Inam, F, “Epoxy/Graphene Nanocomposites–Processing and Properties: A Review.” RSC Advances, 5 (90) 73510–73524 (2015)CrossRef
21.
Zurück zum Zitat Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surface and Coatings Technology, 204 (3) 237–245 (2009)CrossRef Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surface and Coatings Technology, 204 (3) 237–245 (2009)CrossRef
22.
Zurück zum Zitat Dominis, AJ, Spinks, GM, Wallace, GG, “Comparison of Polyaniline Primers Prepared with Different Dopants for Corrosion Protection of Steel.” Prog. Org. Coat., 48 (1) 43–49 (2003)CrossRef Dominis, AJ, Spinks, GM, Wallace, GG, “Comparison of Polyaniline Primers Prepared with Different Dopants for Corrosion Protection of Steel.” Prog. Org. Coat., 48 (1) 43–49 (2003)CrossRef
23.
Zurück zum Zitat Fang, J, Xu, K, Zhu, L, Zhou, Z, Tang, H, “A Study on Mechanism of Corrosion Protection of Polyaniline Coating and its Failure.” Corros. Sci., 49 (11) 4232–4242 (2007)CrossRef Fang, J, Xu, K, Zhu, L, Zhou, Z, Tang, H, “A Study on Mechanism of Corrosion Protection of Polyaniline Coating and its Failure.” Corros. Sci., 49 (11) 4232–4242 (2007)CrossRef
24.
Zurück zum Zitat Schauer, T, Joos, A, Dulog, L, Eisenbach, C, “Protection of Iron Against Corrosion with Polyaniline Primers.” Prog. Org. Coat., 33 (1) 20–27 (1998)CrossRef Schauer, T, Joos, A, Dulog, L, Eisenbach, C, “Protection of Iron Against Corrosion with Polyaniline Primers.” Prog. Org. Coat., 33 (1) 20–27 (1998)CrossRef
25.
Zurück zum Zitat Hartwig, A, Sebald, M, Pütz, D, Aberle, L, “Preparation, Characterisation and Properties of Nanocomposites Based on Epoxy Resins—An Overview.” Proc. Macromolecular Symposia (2005) Hartwig, A, Sebald, M, Pütz, D, Aberle, L, “Preparation, Characterisation and Properties of Nanocomposites Based on Epoxy Resins—An Overview.” Proc. Macromolecular Symposia (2005)
26.
Zurück zum Zitat Becker, O, Varley, R, Simon, G, “Morphology, Thermal Relaxations and Mechanical Properties of Layered Silicate Nanocomposites Based upon High-Functionality Epoxy Resins.” Polymer, 43 (16) 4365–4373 (2002)CrossRef Becker, O, Varley, R, Simon, G, “Morphology, Thermal Relaxations and Mechanical Properties of Layered Silicate Nanocomposites Based upon High-Functionality Epoxy Resins.” Polymer, 43 (16) 4365–4373 (2002)CrossRef
27.
Zurück zum Zitat Yang, L, Liu, F, Han, E, “Effects of P/B on the Properties of Anticorrosive Coatings with Different Particle Size.” Prog. Org. Coat., 53 (2) 91–98 (2005)CrossRef Yang, L, Liu, F, Han, E, “Effects of P/B on the Properties of Anticorrosive Coatings with Different Particle Size.” Prog. Org. Coat., 53 (2) 91–98 (2005)CrossRef
28.
Zurück zum Zitat Lamaka, SV, Zheludkevich, ML, Yasakau, KA, Serra, R, Poznyak, S, Ferreira, M, “Nanoporous Titania Interlayer as Reservoir of Corrosion Inhibitors for Coatings with Self-healing Ability.” Prog. Org. Coat., 58 (2) 127–135 (2007)CrossRef Lamaka, SV, Zheludkevich, ML, Yasakau, KA, Serra, R, Poznyak, S, Ferreira, M, “Nanoporous Titania Interlayer as Reservoir of Corrosion Inhibitors for Coatings with Self-healing Ability.” Prog. Org. Coat., 58 (2) 127–135 (2007)CrossRef
29.
Zurück zum Zitat Shi, H, Liu, F, Yang, L, Han, E, “Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2.” Prog. Org. Coat., 62 (4) 359–368 (2008)CrossRef Shi, H, Liu, F, Yang, L, Han, E, “Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2.” Prog. Org. Coat., 62 (4) 359–368 (2008)CrossRef
30.
Zurück zum Zitat Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294 (2017)CrossRef Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294 (2017)CrossRef
31.
Zurück zum Zitat Yu, Z, Di, H, Ma, Y, He, Y, Liang, L, Lv, L, Ran, X, Pan, Y, Luo, Z, “Preparation of Graphene Oxide Modified by Titanium Dioxide to Enhance the Anti-Corrosion Performance of Epoxy Coatings.” Surf. Coat. Technol., 276 471–478 (2015)CrossRef Yu, Z, Di, H, Ma, Y, He, Y, Liang, L, Lv, L, Ran, X, Pan, Y, Luo, Z, “Preparation of Graphene Oxide Modified by Titanium Dioxide to Enhance the Anti-Corrosion Performance of Epoxy Coatings.” Surf. Coat. Technol., 276 471–478 (2015)CrossRef
32.
Zurück zum Zitat Mostafaei, A, Nasirpouri, F, “Electrochemical Study of Epoxy Coating Containing Novel Conducting Nanocomposite Comprising Polyaniline–ZnO Nanorods on Low Carbon Steel.” J. Coat. Technol. Res., 10 (5) 679–694 (2013)CrossRef Mostafaei, A, Nasirpouri, F, “Electrochemical Study of Epoxy Coating Containing Novel Conducting Nanocomposite Comprising Polyaniline–ZnO Nanorods on Low Carbon Steel.” J. Coat. Technol. Res., 10 (5) 679–694 (2013)CrossRef
33.
Zurück zum Zitat Mostafaei, A, Nasirpouri, F, “Preparation and Characterization of a Novel Conducting Nanocomposite Blended with Epoxy Coating for Antifouling and Antibacterial Applications.” Corros. Eng. Sci. Technol., 48 (7) 513–524 (2014)CrossRef Mostafaei, A, Nasirpouri, F, “Preparation and Characterization of a Novel Conducting Nanocomposite Blended with Epoxy Coating for Antifouling and Antibacterial Applications.” Corros. Eng. Sci. Technol., 48 (7) 513–524 (2014)CrossRef
34.
Zurück zum Zitat Mostafaei, A, Nasirpouri, F, “Epoxy/Polyaniline–ZnO Nanorods Hybrid Nanocomposite Coatings: Synthesis, Characterization and Corrosion Protection Performance of Conducting Paints.” Prog. Org. Coat., 77 (1) 146–159 (2014)CrossRef Mostafaei, A, Nasirpouri, F, “Epoxy/Polyaniline–ZnO Nanorods Hybrid Nanocomposite Coatings: Synthesis, Characterization and Corrosion Protection Performance of Conducting Paints.” Prog. Org. Coat., 77 (1) 146–159 (2014)CrossRef
35.
Zurück zum Zitat Jafari, Y, Ghoreishi, SM, Shabani-Nooshabadi, M, “Electrochemical Deposition and Characterization of Polyaniline–Graphene Nanocomposite Films and its Corrosion Protection Properties.” J. Polym. Res., 23 (5) 91 (2016)CrossRef Jafari, Y, Ghoreishi, SM, Shabani-Nooshabadi, M, “Electrochemical Deposition and Characterization of Polyaniline–Graphene Nanocomposite Films and its Corrosion Protection Properties.” J. Polym. Res., 23 (5) 91 (2016)CrossRef
36.
Zurück zum Zitat Mooss, VA, Bhopale, AA, Deshpande, PP, Athawale, AA, “Graphene Oxide-Modified Polyaniline Pigment for Epoxy Based Anti-Corrosion Coatings.” Chem. Pap., 71 (8) 1515–1528 (2017)CrossRef Mooss, VA, Bhopale, AA, Deshpande, PP, Athawale, AA, “Graphene Oxide-Modified Polyaniline Pigment for Epoxy Based Anti-Corrosion Coatings.” Chem. Pap., 71 (8) 1515–1528 (2017)CrossRef
37.
Zurück zum Zitat Zhang, K, Zhang, LL, Zhao, X, Wu, J, “Graphene/Polyaniline Nanofiber Composites as supercapacitor Electrodes.” Chem. Mater., 22 (4) 1392–1401 (2010)CrossRef Zhang, K, Zhang, LL, Zhao, X, Wu, J, “Graphene/Polyaniline Nanofiber Composites as supercapacitor Electrodes.” Chem. Mater., 22 (4) 1392–1401 (2010)CrossRef
38.
Zurück zum Zitat Nasirpouri, F, Pourmahmoudi, H, Abbasi, F, Littlejohn, S, Chauhan, AS, Nogaret, A, “Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites.” J. Electron. Mater., 44 (10) 3512 (2015)CrossRef Nasirpouri, F, Pourmahmoudi, H, Abbasi, F, Littlejohn, S, Chauhan, AS, Nogaret, A, “Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites.” J. Electron. Mater., 44 (10) 3512 (2015)CrossRef
39.
Zurück zum Zitat Huang, Y, Lin, C, “Facile Synthesis and Morphology Control of Graphene Oxide/Polyaniline Nanocomposites Via In Situ Polymerization Process.” Polymer, 53 (13) 2574–2582 (2012)CrossRef Huang, Y, Lin, C, “Facile Synthesis and Morphology Control of Graphene Oxide/Polyaniline Nanocomposites Via In Situ Polymerization Process.” Polymer, 53 (13) 2574–2582 (2012)CrossRef
40.
Zurück zum Zitat Yin, Q, Shu, R, Xing, H, Tan, D, Gan, Y, Xu, G, “Rheological Behavior and Electrical Properties of Graphene Oxide/Polyaniline Nanocomposites.” Nano, 11 (02) 1650020 (2016)CrossRef Yin, Q, Shu, R, Xing, H, Tan, D, Gan, Y, Xu, G, “Rheological Behavior and Electrical Properties of Graphene Oxide/Polyaniline Nanocomposites.” Nano, 11 (02) 1650020 (2016)CrossRef
41.
Zurück zum Zitat Li, M, Yin, W, Han, X, Chang, X, “Hierarchical Nanocomposites of Polyaniline Scales Coated on Graphene Oxide Sheets for Enhanced Supercapacitors.” J. Solid State Electrochem., 20 (7) 1941–1948 (2016)CrossRef Li, M, Yin, W, Han, X, Chang, X, “Hierarchical Nanocomposites of Polyaniline Scales Coated on Graphene Oxide Sheets for Enhanced Supercapacitors.” J. Solid State Electrochem., 20 (7) 1941–1948 (2016)CrossRef
42.
Zurück zum Zitat Thema, F, Moloto, M, Dikio, E, Nyangiwe, N, Kotsedi, L, Maaza, M, Khenfouch, M, “Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide.” J. Chem., 2013 (2012) Thema, F, Moloto, M, Dikio, E, Nyangiwe, N, Kotsedi, L, Maaza, M, Khenfouch, M, “Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide.” J. Chem., 2013 (2012)
43.
Zurück zum Zitat Sun, J, Bi, H, “Pickering Emulsion Fabrication and Enhanced Supercapacity of Graphene Oxide-Covered Polyaniline Nanoparticles.” Mater. Lett., 81 48–51 (2012)CrossRef Sun, J, Bi, H, “Pickering Emulsion Fabrication and Enhanced Supercapacity of Graphene Oxide-Covered Polyaniline Nanoparticles.” Mater. Lett., 81 48–51 (2012)CrossRef
44.
Zurück zum Zitat Shunaev, VV, Glukhova, OE, “Topology Influence on the Process of Graphene Functionalization by Epoxy and Hydroxyl Groups.” J. Phys. Chem. C, 120 (7) 4145–4149 (2016)CrossRef Shunaev, VV, Glukhova, OE, “Topology Influence on the Process of Graphene Functionalization by Epoxy and Hydroxyl Groups.” J. Phys. Chem. C, 120 (7) 4145–4149 (2016)CrossRef
45.
Zurück zum Zitat Wei, H, Zhu, J, Wu, S, Wei, S, Guo, Z, “Electrochromic Polyaniline/Graphite Oxide Nanocomposites with Endured Electrochemical Energy Storage.” Polymer, 54 (7) 1820–1831 (2013)CrossRef Wei, H, Zhu, J, Wu, S, Wei, S, Guo, Z, “Electrochromic Polyaniline/Graphite Oxide Nanocomposites with Endured Electrochemical Energy Storage.” Polymer, 54 (7) 1820–1831 (2013)CrossRef
46.
Zurück zum Zitat Hu, F, Li, W, Zhang, J, Meng, W, “Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite.” J. Mater. Sci. Technol., 30 (4) 321–327 (2014)CrossRef Hu, F, Li, W, Zhang, J, Meng, W, “Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite.” J. Mater. Sci. Technol., 30 (4) 321–327 (2014)CrossRef
47.
Zurück zum Zitat Marcano, DC, Kosynkin, DV, Berlin, JM, Sinitskii, A, Sun, Z, Slesarev, A, Alemany, LB, Lu, W, Tour, JM, “Improved Synthesis of Graphene Oxide.” ACS Nano, 4 (8) 4806–4814 (2010)CrossRef Marcano, DC, Kosynkin, DV, Berlin, JM, Sinitskii, A, Sun, Z, Slesarev, A, Alemany, LB, Lu, W, Tour, JM, “Improved Synthesis of Graphene Oxide.” ACS Nano, 4 (8) 4806–4814 (2010)CrossRef
48.
Zurück zum Zitat Imran, SM, Kim, Y, Shao, GN, Hussain, M, Choa, Y, Kim, HT, “Enhancement of Electroconductivity of Polyaniline/Graphene Oxide Nanocomposites Through In Situ Emulsion Polymerization.” J. Mater. Sci., 49 (3) 1328–1335 (2014)CrossRef Imran, SM, Kim, Y, Shao, GN, Hussain, M, Choa, Y, Kim, HT, “Enhancement of Electroconductivity of Polyaniline/Graphene Oxide Nanocomposites Through In Situ Emulsion Polymerization.” J. Mater. Sci., 49 (3) 1328–1335 (2014)CrossRef
49.
Zurück zum Zitat Mohammadi, S, Taromi, FA, Shariatpanahi, H, Neshati, J, Hemmati, M, “Electrochemical and Anticorrosion Behavior of Functionalized Graphite Nanoplatelets Epoxy Coating.” J. Ind. Eng. Chem., 20 (6) 4124–4139 (2014)CrossRef Mohammadi, S, Taromi, FA, Shariatpanahi, H, Neshati, J, Hemmati, M, “Electrochemical and Anticorrosion Behavior of Functionalized Graphite Nanoplatelets Epoxy Coating.” J. Ind. Eng. Chem., 20 (6) 4124–4139 (2014)CrossRef
50.
Zurück zum Zitat Liu, C, Bi, Q, Leyland, A, Matthews, A, “An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour.” Corros. Sci., 45 (6) 1257–1273 (2003)CrossRef Liu, C, Bi, Q, Leyland, A, Matthews, A, “An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour.” Corros. Sci., 45 (6) 1257–1273 (2003)CrossRef
51.
Zurück zum Zitat Hang, TTX, Truc, TA, Nam, TH, Oanh, VK, Jorcin, J-B, Pébère, N, “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay.” Surf. Coat. Technol., 201 (16) 7408–7415 (2007)CrossRef Hang, TTX, Truc, TA, Nam, TH, Oanh, VK, Jorcin, J-B, Pébère, N, “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay.” Surf. Coat. Technol., 201 (16) 7408–7415 (2007)CrossRef
52.
Zurück zum Zitat Pourhashem, S, Rashidi, A, Vaezi, MR, Bagherzadeh, MR, “Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide.” Surf. Coat. Technol., 317 1–9 (2017)CrossRef Pourhashem, S, Rashidi, A, Vaezi, MR, Bagherzadeh, MR, “Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide.” Surf. Coat. Technol., 317 1–9 (2017)CrossRef
53.
Zurück zum Zitat Sun, W, Wang, L, Wu, T, Wang, M, Yang, Z, Pan, Y, Liu, G, “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 (7) 2367–2373 (2015)CrossRef Sun, W, Wang, L, Wu, T, Wang, M, Yang, Z, Pan, Y, Liu, G, “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 (7) 2367–2373 (2015)CrossRef
54.
Zurück zum Zitat Di, H, Yu, Z, Ma, Y, Zhang, C, Li, F, Lv, L, Pan, Y, Shi, H, He, Y, “Corrosion-Resistant Hybrid Coatings Based on Graphene Oxide–Zirconia Dioxide/Epoxy System.” J. Taiwan Inst. Chem. Eng., 67 511–520 (2016)CrossRef Di, H, Yu, Z, Ma, Y, Zhang, C, Li, F, Lv, L, Pan, Y, Shi, H, He, Y, “Corrosion-Resistant Hybrid Coatings Based on Graphene Oxide–Zirconia Dioxide/Epoxy System.” J. Taiwan Inst. Chem. Eng., 67 511–520 (2016)CrossRef
55.
Zurück zum Zitat Mohammadi, S, Shariatpanahi, H, Taromi, FA, Neshati, J, “Electrochemical and Anticorrosion Behaviors of Hybrid Functionalized Graphite Nano-Platelets/Tripolyphosphate in Epoxy-Coated Carbon Steel.” Mater. Res. Bull., 80 7–22 (2016)CrossRef Mohammadi, S, Shariatpanahi, H, Taromi, FA, Neshati, J, “Electrochemical and Anticorrosion Behaviors of Hybrid Functionalized Graphite Nano-Platelets/Tripolyphosphate in Epoxy-Coated Carbon Steel.” Mater. Res. Bull., 80 7–22 (2016)CrossRef
56.
Zurück zum Zitat Li, M, Ji, X, Cui, L, Liu, J, “In Situ Preparation of Graphene/Polypyrrole Nanocomposite Via Electrochemical Co-Deposition Methodology for Anti-Corrosion Application.” J. Mater. Sci., 52 (20) 12251–12265 (2017)CrossRef Li, M, Ji, X, Cui, L, Liu, J, “In Situ Preparation of Graphene/Polypyrrole Nanocomposite Via Electrochemical Co-Deposition Methodology for Anti-Corrosion Application.” J. Mater. Sci., 52 (20) 12251–12265 (2017)CrossRef
57.
Zurück zum Zitat Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528 (2016)CrossRef Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528 (2016)CrossRef
Metadaten
Titel
Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties
verfasst von
Sara Fazli-Shokouhi
Farzad Nasirpouri
Maasoumeh Khatamian
Publikationsdatum
22.01.2019
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 4/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-00173-3

Weitere Artikel der Ausgabe 4/2019

Journal of Coatings Technology and Research 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.