Skip to main content
Erschienen in: Journal of Coatings Technology and Research 4/2018

26.03.2018

Drag resistance of ship hulls: effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

verfasst von: Xueting Wang, Stefan Møller Olsen, Eduardo Andres Martinez, Kenneth Nørager Olsen, Søren Kiil

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fouling control coatings (FCCs) and irregularities (e.g., welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given to the effects of coating water absorption on skin friction. Furthermore, to investigate the effects of welding seam height and density (number of welding seams per five meters of ship side) on drag resistance, a new flexible rotor was designed and used for experimentation. It was found, under the conditions selected, that a so-called fouling release (FR) coating caused approximately 5.6% less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption experiments showed that water absorption of the FR coating did not result in any significant impacts on skin friction. On the other hand, water absorption was found to actually lower the skin friction of AF coatings. This may be attributed to a smoothening of the coating surface. The effects of welding seam height and density on drag resistance were found to be substantial when welding seam height is above 5 mm, especially at high tangential speeds (above 15 knots). Using an interpolation approach, the pilot-scale welding seam drag data could be used to estimate the drag resistance at approximated full-scale conditions, equivalent to about one welding seam per five meters of ship side. It was shown, in this case, that the contribution of welding seams to ship skin friction could very well be less significant than those of FCCs when the welding seam height is below 5 mm, a representative value for full-scale welding seam height.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Townsin, RL, “The Ship Hull Fouling Penalty.” Biofouling, 19 (S1) 9–15 (2003)CrossRef Townsin, RL, “The Ship Hull Fouling Penalty.” Biofouling, 19 (S1) 9–15 (2003)CrossRef
2.
Zurück zum Zitat Schultz, MP, Bendick, JA, Holm, ER, Hertel, WM, “Economic Impact of Biofouling on a Naval Surface Ship.” Biofouling, 27 (1) 87–98 (2011)CrossRef Schultz, MP, Bendick, JA, Holm, ER, Hertel, WM, “Economic Impact of Biofouling on a Naval Surface Ship.” Biofouling, 27 (1) 87–98 (2011)CrossRef
3.
Zurück zum Zitat Buskens, P, Wouters, M, Rentrop, C, Vroon, Z, “A Brief Review of Environmentally Benign Antifouling and Foul-Release Coatings for Marine Applications.” J. Coat. Technol. Res., 10 (1) 29–36 (2013)CrossRef Buskens, P, Wouters, M, Rentrop, C, Vroon, Z, “A Brief Review of Environmentally Benign Antifouling and Foul-Release Coatings for Marine Applications.” J. Coat. Technol. Res., 10 (1) 29–36 (2013)CrossRef
4.
Zurück zum Zitat Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 (2) 75–104 (2004)CrossRef Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 (2) 75–104 (2004)CrossRef
5.
Zurück zum Zitat Howell, D, Behrends, B, “A Review of Surface Roughness in Antifouling Coatings Illustrating the Importance of Cutoff Length.” Biofouling, 22 (6) 401–410 (2006)CrossRef Howell, D, Behrends, B, “A Review of Surface Roughness in Antifouling Coatings Illustrating the Importance of Cutoff Length.” Biofouling, 22 (6) 401–410 (2006)CrossRef
6.
Zurück zum Zitat Lejars, M, Margaillan, A, Bressy, C, “Fouling Release Coatings: A nontoxic Alternative to Biocidal Antifouling Coatings.” Chem. Rev., 112 (8) 4347–4390 (2012)CrossRef Lejars, M, Margaillan, A, Bressy, C, “Fouling Release Coatings: A nontoxic Alternative to Biocidal Antifouling Coatings.” Chem. Rev., 112 (8) 4347–4390 (2012)CrossRef
7.
Zurück zum Zitat Granville, PS, “Drag-Characterization Method for Arbitrarily Rough Surfaces by Means of Rotating Disks.” J. Fluids Eng., 104 373–377 (1982)CrossRef Granville, PS, “Drag-Characterization Method for Arbitrarily Rough Surfaces by Means of Rotating Disks.” J. Fluids Eng., 104 373–377 (1982)CrossRef
8.
Zurück zum Zitat Granville, PS, “Three Indirect Methods for the Drag Characterization of Arbitrarily Rough Surfaces on Flat Plates.” J. Sh. Res., 31 (2) 70–77 (1987) Granville, PS, “Three Indirect Methods for the Drag Characterization of Arbitrarily Rough Surfaces on Flat Plates.” J. Sh. Res., 31 (2) 70–77 (1987)
9.
Zurück zum Zitat Candries, BM, Atlar, M, Mesbahi, E, Pazouki, K, “The Measurement of the Drag Characteristics of tin-Free Self-Polishing Co-polymers and Fouling Release Coatings Using a Rotor Apparatus.” Biofouling, 19 27–36 (2003)CrossRef Candries, BM, Atlar, M, Mesbahi, E, Pazouki, K, “The Measurement of the Drag Characteristics of tin-Free Self-Polishing Co-polymers and Fouling Release Coatings Using a Rotor Apparatus.” Biofouling, 19 27–36 (2003)CrossRef
10.
Zurück zum Zitat Candries, BM, Anderson, CD, Atlar, M, “Foul Release Systems and Drag: Observations on How the Coatings Work.” J. Prot. Coat. & Linings, 18 (4) 38–43 (2001) Candries, BM, Anderson, CD, Atlar, M, “Foul Release Systems and Drag: Observations on How the Coatings Work.” J. Prot. Coat. & Linings, 18 (4) 38–43 (2001)
11.
Zurück zum Zitat Weinell, CE, Olsen, KN, Christoffersen, MW, Kiil, S, “Experimental Study of Drag Resistance Using a Laboratory Scale Rotary Set-Up.” Biofouling, 19 45–51 (2003)CrossRef Weinell, CE, Olsen, KN, Christoffersen, MW, Kiil, S, “Experimental Study of Drag Resistance Using a Laboratory Scale Rotary Set-Up.” Biofouling, 19 45–51 (2003)CrossRef
12.
Zurück zum Zitat Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res., 12 (3) 415–444 (2015)CrossRef Lindholdt, A, Dam-Johansen, K, Olsen, SM, Yebra, DM, Kiil, S, “Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review.” J. Coat. Technol. Res., 12 (3) 415–444 (2015)CrossRef
13.
Zurück zum Zitat Monty, JP, Dogan, E, Hanson, R, Scardino, AJ, Ganapathisubramani, B, Hutchins, N, “An Assessment of the Ship Drag Penalty Arising from Light Calcareous Tubeworm Fouling.” Biofouling, 32 (4) 451–464 (2016)CrossRef Monty, JP, Dogan, E, Hanson, R, Scardino, AJ, Ganapathisubramani, B, Hutchins, N, “An Assessment of the Ship Drag Penalty Arising from Light Calcareous Tubeworm Fouling.” Biofouling, 32 (4) 451–464 (2016)CrossRef
14.
Zurück zum Zitat Lindholdt, A, Dam-Johansen, K, Yebra, DM, Olsen, SM, Kiil, S, “Estimation of Long-Term Drag Performance of Fouling Control Coatings Using an Ocean-Placed Raft with Multiple Dynamic Rotors.” J. Coat. Technol. Res., 12 (6) 975–999 (2015)CrossRef Lindholdt, A, Dam-Johansen, K, Yebra, DM, Olsen, SM, Kiil, S, “Estimation of Long-Term Drag Performance of Fouling Control Coatings Using an Ocean-Placed Raft with Multiple Dynamic Rotors.” J. Coat. Technol. Res., 12 (6) 975–999 (2015)CrossRef
15.
Zurück zum Zitat Granville, PS, “Similarity-Law Characterization Methods for Arbitrary Hydrodynamic Roughnesses.” David W. Taylor Naval Ship Research and Development Center, Report No. 78-SPD-815-01 (1978) Granville, PS, “Similarity-Law Characterization Methods for Arbitrary Hydrodynamic Roughnesses.” David W. Taylor Naval Ship Research and Development Center, Report No. 78-SPD-815-01 (1978)
16.
Zurück zum Zitat Holm, E, Schultz, M, Haslbeck, E, Talbott, W, Field, A, “Evaluation of Hydrodynamic Drag on Experimental Fouling-release Surfaces, Using Rotating Disks.” Biofouling, 20 (4–5) 219–226 (2004)CrossRef Holm, E, Schultz, M, Haslbeck, E, Talbott, W, Field, A, “Evaluation of Hydrodynamic Drag on Experimental Fouling-release Surfaces, Using Rotating Disks.” Biofouling, 20 (4–5) 219–226 (2004)CrossRef
17.
Zurück zum Zitat Demirel, YK, Khorasanchi, M, Turan, O, Incecik, A, “CFD Approach to Resistance Prediction as a Function of Roughness.” Proc. Transport Research Arena, Paris, April 2014 Demirel, YK, Khorasanchi, M, Turan, O, Incecik, A, “CFD Approach to Resistance Prediction as a Function of Roughness.” Proc. Transport Research Arena, Paris, April 2014
19.
Zurück zum Zitat Schultz, MP, “Effects of Coating Roughness and Biofouling on Ship Resistance and Powering.” Biofouling, 23 (5–6) 331–341 (2007)CrossRef Schultz, MP, “Effects of Coating Roughness and Biofouling on Ship Resistance and Powering.” Biofouling, 23 (5–6) 331–341 (2007)CrossRef
20.
Zurück zum Zitat Swain, GW, “Biofouling Control: A Critical Component of Drag Reduction.” Proc. International Symposium on Seawater Drag Reduction, Newport, RI, USA, July 1998 Swain, GW, “Biofouling Control: A Critical Component of Drag Reduction.” Proc. International Symposium on Seawater Drag Reduction, Newport, RI, USA, July 1998
21.
Zurück zum Zitat Callow, M, “Ship Fouling: Problems and Solutions.” Chem. Ind., 5 123–127 (1990) Callow, M, “Ship Fouling: Problems and Solutions.” Chem. Ind., 5 123–127 (1990)
22.
Zurück zum Zitat Oikonomou, EK, Iatridi, Z, Moschakou, M, Damigos, P, Bokias, G, Kallitsis, JK, “Development of Cu2+- and/or Phosphonium-Based Polymeric Biocidal Materials and Their Potential Application in Antifouling Paints.” Prog. Org. Coat., 75 (3) 190–199 (2012)CrossRef Oikonomou, EK, Iatridi, Z, Moschakou, M, Damigos, P, Bokias, G, Kallitsis, JK, “Development of Cu2+- and/or Phosphonium-Based Polymeric Biocidal Materials and Their Potential Application in Antifouling Paints.” Prog. Org. Coat., 75 (3) 190–199 (2012)CrossRef
23.
Zurück zum Zitat Yonehara, Y, Yamashita, H, Kawamura, C, Itoh, K, “A New Antifouling Paint Based on a Zinc Acrylate Copolymer.” Prog. Org. Coat., 42 (3–4) 150–158 (2001)CrossRef Yonehara, Y, Yamashita, H, Kawamura, C, Itoh, K, “A New Antifouling Paint Based on a Zinc Acrylate Copolymer.” Prog. Org. Coat., 42 (3–4) 150–158 (2001)CrossRef
24.
Zurück zum Zitat Townsin, RL, “Estimating the Technical and Economic Penalties of Hull and Propeller Roughness.” Trans. - Soc. Nav. Archit. Mar. Eng., 89 295–318 (1982) Townsin, RL, “Estimating the Technical and Economic Penalties of Hull and Propeller Roughness.” Trans. - Soc. Nav. Archit. Mar. Eng., 89 295–318 (1982)
25.
Zurück zum Zitat Schultz, MP, “The Relationship Between Frictional Resistance and Roughness for Surfaces Smoothed by Sanding.” J. Fluids Eng., 124 (2) 492–499 (2002)CrossRef Schultz, MP, “The Relationship Between Frictional Resistance and Roughness for Surfaces Smoothed by Sanding.” J. Fluids Eng., 124 (2) 492–499 (2002)CrossRef
26.
Zurück zum Zitat Schultz, MP, Flack, KA, “Turbulent Boundary Layers Over Surfaces Smoothed by Sanding.” J. Fluids Eng., 125 (5) 863–870 (2003)CrossRef Schultz, MP, Flack, KA, “Turbulent Boundary Layers Over Surfaces Smoothed by Sanding.” J. Fluids Eng., 125 (5) 863–870 (2003)CrossRef
27.
Zurück zum Zitat Ciortan, C, Bertram, V, “RANSE Simulations for the Effect of Welds on Ship Resistance.” Proc. Numerical Towing tank Symposium, Marstrand, Sweden, September 2014 Ciortan, C, Bertram, V, “RANSE Simulations for the Effect of Welds on Ship Resistance.” Proc. Numerical Towing tank Symposium, Marstrand, Sweden, September 2014
28.
Zurück zum Zitat Kiil, S, Dam-Johansen, K, Weinell, CE, Pedersen, MS, Codolar, SA, “Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling: A Literature Review.” Biofouling, 19 (S1) 37–43 (2010) Kiil, S, Dam-Johansen, K, Weinell, CE, Pedersen, MS, Codolar, SA, “Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling: A Literature Review.” Biofouling, 19 (S1) 37–43 (2010)
29.
Zurück zum Zitat Kiil, S, Weinell, CE, Pedersen, MS, Dam-Johansen, K, “Analysis of Self-Polishing Antifouling Paints Using Rotary Experiments and Mathematical Modeling.” Ind. Eng. Chem. Res., 40 3906–3920 (2001)CrossRef Kiil, S, Weinell, CE, Pedersen, MS, Dam-Johansen, K, “Analysis of Self-Polishing Antifouling Paints Using Rotary Experiments and Mathematical Modeling.” Ind. Eng. Chem. Res., 40 3906–3920 (2001)CrossRef
30.
Zurück zum Zitat Lyman, J, Fleming, RH, “Composition of seawater.” J. Mar. Res., 3 134–146 (1940) Lyman, J, Fleming, RH, “Composition of seawater.” J. Mar. Res., 3 134–146 (1940)
31.
Zurück zum Zitat Li, L, Gao, Z, Moan, T, Ormberg, H, “Analysis of Lifting Operation of a Monopile for an Offshore Wind Turbine Considering Vessel Shielding Effects.” Marine structures, 39 287–314 (2014)CrossRef Li, L, Gao, Z, Moan, T, Ormberg, H, “Analysis of Lifting Operation of a Monopile for an Offshore Wind Turbine Considering Vessel Shielding Effects.” Marine structures, 39 287–314 (2014)CrossRef
32.
Zurück zum Zitat Arpaci, VS, Larsen, PS, Convection Heat Transfer. Prentice-Hall, Englewood Cliffs (1984) Arpaci, VS, Larsen, PS, Convection Heat Transfer. Prentice-Hall, Englewood Cliffs (1984)
33.
Zurück zum Zitat David Andereck, C, Liu, SS, Swinney, HL, “Flow Regimes in a Circular Couette System with Independently Rotating Cylinders.” J. Fluid Mech., 164 155–183 (1986)CrossRef David Andereck, C, Liu, SS, Swinney, HL, “Flow Regimes in a Circular Couette System with Independently Rotating Cylinders.” J. Fluid Mech., 164 155–183 (1986)CrossRef
34.
Zurück zum Zitat Mirabedini, SM, Pazoki, S, Esfandeh, M, Mohseni, M, Akbari, Z, “Comparison of Drag Characteristics of Self-Polishing Co-polymers and Silicone Foul Release Coatings: A Study of Wettability and Surface Roughness.” Prog. Org. Coat., 57 (4) 421–429 (2006)CrossRef Mirabedini, SM, Pazoki, S, Esfandeh, M, Mohseni, M, Akbari, Z, “Comparison of Drag Characteristics of Self-Polishing Co-polymers and Silicone Foul Release Coatings: A Study of Wettability and Surface Roughness.” Prog. Org. Coat., 57 (4) 421–429 (2006)CrossRef
35.
Zurück zum Zitat Kiil, S, Dam-Johansen, K, Weinell, CE, Pedersen, MS, Codolar, SA, “Dynamic Simulations of a Self-Polishing Antifouling Paint Exposed to Seawater.” J. Coat. Technol., 74 (929) 45–54 (2002)CrossRef Kiil, S, Dam-Johansen, K, Weinell, CE, Pedersen, MS, Codolar, SA, “Dynamic Simulations of a Self-Polishing Antifouling Paint Exposed to Seawater.” J. Coat. Technol., 74 (929) 45–54 (2002)CrossRef
Metadaten
Titel
Drag resistance of ship hulls: effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams
verfasst von
Xueting Wang
Stefan Møller Olsen
Eduardo Andres Martinez
Kenneth Nørager Olsen
Søren Kiil
Publikationsdatum
26.03.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 4/2018
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-0054-7

Weitere Artikel der Ausgabe 4/2018

Journal of Coatings Technology and Research 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.