Skip to main content
Log in

Stability and Trunnion Wear Potential in Large-diameter Metal-on-Metal Total Hips: A Finite Element Analysis

  • Symposium: 2013 Hip Society Proceedings
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Large-diameter femoral heads for metal-on-metal THA hold theoretical advantages of joint stability and low bearing surface wear. However, recent reports have indicated an unacceptably high rate of wear-associated failure with large-diameter bearings, possibly due in part to increased wear at the trunnion interface. Thus, the deleterious consequences of using large heads may outweigh their theoretical advantages.

Questions/purposes

We investigated (1) to what extent femoral head size influenced stability in THA for several dislocation-prone motions; and the biomechanics of wear at the trunnion interface by considering the relationship between (2) wear potential and head size and (3) wear potential and other factors, including cup orientation, type of hip motion, and assembly/impaction load.

Methods

Computational simulations were executed using a previously validated nonlinear contact finite element model. Stability was determined at 36 cup orientations for five distinct dislocation challenges. Wear at the trunnion interface was calculated for three separate cup orientations subjected to gait, stooping, and sit-to-stand motions. Seven head diameters were investigated: 32 to 56 mm, in 4-mm increments.

Results

Stability improved with increased diameter, although diminishing benefit was seen for sizes of greater than 40 mm. By contrast, contact stress and computed wear at the trunnion interface all increased unabatedly with increasing head size. Increased impaction forces resulted in only small decreases in trunnion wear generation.

Conclusions

These data suggest that the theoretical advantages of large-diameter femoral heads have a limit. Diameters of greater than 40 mm demonstrated only modest improvement in terms of joint stability yet incurred substantial increase in wear potential at the trunnion.

Clinical Relevance

Our model has potential to help investigators and designers of hip implants to better understand the optimization of trunnion design for long-term durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–G
Fig. 3A–C
Fig. 4
Fig. 5A–E
Fig. 6
Fig. 7A–C
Fig. 8A–C
Fig. 9A–B
Fig. 10A–C
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Archard J. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24:981–988.

    Article  Google Scholar 

  2. Australian Orthopaedic Association. Annual Report of the Australian Orthopaedic Association National Joint Registry. Available at: http://www.dmac.adelaide.edu.au/aoanjrr/documents/aoanjrrreport_2010.pdf. Accessed November 2012.

  3. Bartz RL, Noble PC, Kadakia NR, Tullos HS. The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am. 2000;82:1300–1307.

    CAS  PubMed  Google Scholar 

  4. Berton C, Girard J, Krantz N, Migaud H. The Durom large diameter head acetabular component: early results with a large-diameter metal-on-metal bearing. J Bone Joint Surg Br. 2010;92:202–208.

    Article  CAS  PubMed  Google Scholar 

  5. Bolland B, Culliford D, Langton D, Millington J, Arden N, Latham J. High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: clinical, radiological and retrieval analysis. J Bone Joint Surg Br. 2011;93:608–615.

    Article  CAS  PubMed  Google Scholar 

  6. Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91:128–133.

    Article  PubMed  Google Scholar 

  7. Brockett C, Williams S, Jin Z, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater. 2007;81:508–515.

    Article  PubMed  Google Scholar 

  8. Brown S, Flemming C, Kawalec J, Placko H, Vassaux C, Merritt K, Payer J, Kraay M. Fretting corrosion accelerates crevice corrosion of modular hip tapers. J Appl Biomater. 1995;6:19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Browne JA, Bechtold CD, Berry DJ, Hanssen AD, Lewallen DG. Failed metal-on-metal hip arthroplasties: a spectrum of clinical presentations and operative findings. Clin Orthop Relat Res. 2010;468:2313–2320.

    Article  PubMed  Google Scholar 

  10. Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: an in vitro study. J Arthroplasty. 2005;20:11–19.

    Article  PubMed  Google Scholar 

  11. Cinotti G, Lucioli N, Malagoli A, Calderoli C, Cassese F. Do large femoral heads reduce the risks of impingement in total hip arthroplasty with optimal and non-optimal cup positioning? Int Orthop. 2011;3:317–323.

    Article  Google Scholar 

  12. Collier JP, Mayor MB, Williams IR, Surprenant VA, Surprenant HP, Currier BH. The tradeoffs associated with modular hip prostheses. Clin Orthop Relat Res. 1995;311:91–101.

    PubMed  Google Scholar 

  13. Cook SD, Barrack RL, Clemow A. Corrosion and wear at the modular interface of uncemented femoral stems. J Bone Joint Surg Br. 1994;76:68–72.

    CAS  PubMed  Google Scholar 

  14. Crowninshield RD, Maloney WJ, Wentz DH, Humphrey SM, Blanchard CR. Biomechanics of large femoral heads: what they do and don’t do. Clin Orthop Relat Res. 2004;429:102–107.

    Article  PubMed  Google Scholar 

  15. Cuckler JM, Moore KD, Lombardi AV, McPherson E, Emerson R. Large versus small femoral heads in metal-on-metal total hip arthroplasty. J Arthroplasty. 2004;19:41–44.

    Article  PubMed  Google Scholar 

  16. De Haan R, Pattyn C, Gill HS, Murray DW, Campbell PA, De Smet K. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br. 2008;90:1291–1297.

    Article  PubMed  Google Scholar 

  17. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am. 2000;82:315–321.

    PubMed  Google Scholar 

  18. Dobbs H, Minski M. Metal ion release after total hip replacement. Biomaterials. 1980;1:193–198.

    Article  CAS  PubMed  Google Scholar 

  19. Donell S, Darrah C, Nolan J, Wimhurst J, Toms A, Barker T, Case C, Tucker J. Early failure of the Ultima metal-on-metal total hip replacement in the presence of normal plain radiographs. J Bone Joint Surg Br. 2010;92:1501–1508.

    Article  CAS  PubMed  Google Scholar 

  20. Dorr LD, Wolf AW, Chandler R, Conaty JP. Classification and treatment of dislocations of total hip arthroplasty. Clin Orthop Relat Res. 1983;173:151–158.

    PubMed  Google Scholar 

  21. Dowson D, Hardaker C, Flett M, Isaac GH. A hip joint simulator study of the performance of metal-on-metal joints. Part II: Design. J Arthroplasty. 2004;19:124–130.

    Google Scholar 

  22. Elias JJ, Nagao M, Chu YH, Carbone JJ, Lennox DW, Chao E. Medial cortex strain distribution during noncemented total hip arthroplasty. Clin Orthop Relat Res. 2000;370:250–258.

    Article  PubMed  Google Scholar 

  23. Elkins JM, Kruger KM, Pedersen DR, Callaghan JJ, Brown TD. Edge-loading severity as a function of cup lip radius in metal-on-metal total hips—a finite element analysis. J Orthop Res. 2012;30:169–177.

    Article  PubMed  Google Scholar 

  24. Elkins JM, O’Brien MK, Stroud NJ, Pedersen DR, Callaghan JJ, Brown TD. Hard-on-hard total hip impingement causes extreme contact stress concentrations. Clin Orthop Relat Res. 2011;469:454–463.

    Article  PubMed  Google Scholar 

  25. Elkins JM, Stroud NJ, Rudert MJ, Tochigi Y, Pedersen DR, Ellis BJ, Callaghan JJ, Weiss JA, Brown TD. The capsule’s contribution to total hip construct stability—a finite element analysis. J Orthop Res. 2011;29:1642–1648.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fessler H, Fricker D. Friction in femoral prosthesis and photoelastic model cone taper joints. Proc Inst Mech Eng H. 1989;203:1–14.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher J. Bioengineering reasons for the failure of metal-on-metal hip prostheses: an engineer’s perspective. J Bone Joint Surg Br. 2011;93:1001–1004.

    Article  CAS  PubMed  Google Scholar 

  28. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP. The John Charnley Award. Metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res. 2010;468:318–325.

    Article  PubMed  Google Scholar 

  29. Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations: the effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res. 1993;27:1533–1544.

    Article  CAS  PubMed  Google Scholar 

  30. Girard J, Bocquet D, Autissier G, Fouilleron N, Fron D, Migaud H. Metal-on-metal hip arthroplasty in patients thirty years of age or younger. J Bone Joint Surg Am. 2010;92:2419–2426.

    Article  PubMed  Google Scholar 

  31. Goldberg JR, Gilbert JL. In vitro corrosion testing of modular hip tapers. J Biomed Mater Res B Appl Biomater. 2003;64:78–93.

    Article  PubMed  Google Scholar 

  32. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res. 2002;401:149–161.

    Article  PubMed  Google Scholar 

  33. Heiney JP, Battula S, Vrabec GA, Parikh A, Blice R, Schoenfeld AJ, Njus GO. Impact magnitudes applied by surgeons and their importance when applying the femoral head onto the Morse taper for total hip arthroplasty. Arch Orthop Trauma Surg. 2009;129:793–796.

    Article  PubMed  Google Scholar 

  34. Insall JN. Presidential address to The Knee Society: choices and compromises in total knee arthroplasty. Clin Orthop Relat Res. 1988;226:43–48.

    PubMed  Google Scholar 

  35. Jacobs JJ, Gilbert JL, Urban RM. Current concepts review: corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–282.

    CAS  PubMed  Google Scholar 

  36. Khan M, Kuiper JH, Richardson J. The exercise-related rise in plasma cobalt levels after metal-on-metal hip resurfacing arthroplasty. J Bone Joint Surg Br. 2008;90:1152–1157.

    Article  CAS  PubMed  Google Scholar 

  37. Kop AM, Swarts E. Corrosion of a hip stem with a modular neck taper junction: a retrieval study of 16 cases. J Arthroplasty. 2009;24:1019–1023.

    Article  PubMed  Google Scholar 

  38. Langton D, Jameson S, Joyce T, Gandhi J, Sidaginamale R, Mereddy P, Lord J, Nargol A. Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br. 2011;93:1011–1016.

    Article  CAS  PubMed  Google Scholar 

  39. Langton D, Jameson S, Joyce T, Hallab N, Natu S, Nargol A. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg Br. 2010;92:38–46.

    Article  CAS  PubMed  Google Scholar 

  40. Leslie IJ, Williams S, Isaac G, Ingham E, Fisher J. High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res. 2009;467:2259–2265.

    Article  PubMed  Google Scholar 

  41. Liu F, Leslie I, Williams S, Fisher J, Jin Z. Development of computational wear simulation of metal-on-metal hip resurfacing replacements. J Biomech. 2008;41:686–694.

    Article  CAS  PubMed  Google Scholar 

  42. Lombardi AV, Skeels MD, Berend KR, Adams JB, Franchi OJ. Do large heads enhance stability and restore native anatomy in primary total hip arthroplasty? Clin Orthop Relat Res. 2011;469:1547–1553.

    Article  PubMed  Google Scholar 

  43. Mao X, Tay GH, Godbolt DB, Crawford RW. Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplasty. 2012;27:493e13–493e16.

    Article  Google Scholar 

  44. McKellop HA, Sarmiento A, Brien W, Park SH. Interface corrosion of a modular head total hip prosthesis. J Arthroplasty. 1992;7:291–294.

    Article  CAS  PubMed  Google Scholar 

  45. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Muller V, Honl M. Duration and frequency of everyday activities in total hip patients. J Biomech. 2001;34:873–881.

    Article  CAS  PubMed  Google Scholar 

  46. Murray D. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993;75:228–232.

    CAS  PubMed  Google Scholar 

  47. Nadzadi ME, Pedersen DR, Yack HJ, Callaghan JJ, Brown TD. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. J Biomech. 2003;36:577–591.

    Article  PubMed  Google Scholar 

  48. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CL, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008;90:847–851.

    Article  CAS  PubMed  Google Scholar 

  49. Peters CL, McPherson E, Jackson JD, Erickson JA. Reduction in early dislocation rate with large-diameter femoral heads in primary total hip arthroplasty. J Arthroplasty. 2007;22:140–144.

    Article  PubMed  Google Scholar 

  50. Sanders AP, Brannon RM. Assessment of the applicability of the Hertzian contact theory to edge-loaded prosthetic hip bearings. J Biomech. 2011;44:2802–2808.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Scifert CF, Brown TD, Pedersen DR, Callaghan JJ. A finite element analysis of factors influencing total hip dislocation. Clin Orthop Relat Res. 1998;355:152–162.

    Article  PubMed  Google Scholar 

  52. Silva M, Heisel C, Schmalzried TP. Metal-on-metal total hip replacement. Clin Orthop Relat Res. 2005;430:53–61.

    Article  PubMed  Google Scholar 

  53. Stuchin SA. Anatomic diameter femoral heads in total hip arthroplasty: a preliminary report. J Bone Joint Surg Am. 2008;90(suppl 3):52–56.

    Article  PubMed  Google Scholar 

  54. Svensson O, Mathiesen EB, Reinholt F, Blomgren G. Formation of a fulminant soft-tissue pseudotumor after uncemented hip arthroplasty: a case report. J Bone Joint Surg Am. 1988;70:1238–1242.

    CAS  PubMed  Google Scholar 

  55. Walsh AJ, Nikolaou VS, Antoniou J. Inflammatory pseudotumor complicating metal-on-highly cross-linked polyethylene total hip arthroplasty. J Arthroplasty. 2012;27:324.e5–324.e8.

    Google Scholar 

  56. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints: a clinical and histomorphological study. J Bone Joint Surg Am. 2005;87:28–36.

    Article  PubMed  Google Scholar 

  57. Williams S, Leslie I, Isaac G, Jin Z, Ingham E, Fisher J. Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position. J Bone Joint Surg Am. 2008;90:111–117.

    Article  PubMed  Google Scholar 

  58. Zywiel MG, Sayeed SA, Johnson AJ, Schmalzried TP, Mont MA. Survival of hard-on-hard bearings in total hip arthroplasty. Clin Orthop Relat Res. 2011;469:1536–1546.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Douglas R. Pedersen provided valuable engineering collaboration in several earlier phases of finite element model development. We appreciate the assistance of Dr Steve Liu in preparation of this manuscript. Helpful technical data regarding implant design parameters were provided by DePuy Orthopaedics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Brown PhD.

Additional information

The institutions of one or more of the authors have received, during the study period, funding from the NIH (Grants AR46601 and AR53553) (TDB), the Veterans Administration (JJC, TDB), and the National Center for Research Resources (Grant UL1 RR024979) (JME).

One of the authors (JJC) certifies that he or she, or a member of his or her immediate family, has received or may receive payments or benefits, during the study period, an amount of more than USD 1,000,001, from DePuy Orthopaedics, Inc (Warsaw, IN, USA). One of the authors (TDB) certifies that he or she, or a member of his or her immediate family, has received or may receive payments or benefits, during the study period, an amount of USD 10,000 to USD 100,000, from Smith & Nephew, Inc (Memphis, TN, USA).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

The study was performed at the University of Iowa, Iowa City, IA, USA.

About this article

Cite this article

Elkins, J.M., Callaghan, J.J. & Brown, T.D. Stability and Trunnion Wear Potential in Large-diameter Metal-on-Metal Total Hips: A Finite Element Analysis. Clin Orthop Relat Res 472, 529–542 (2014). https://doi.org/10.1007/s11999-013-3244-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-013-3244-8

Keywords

Navigation