Skip to main content
Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2018

12.09.2017 | Original Paper

The process of designing a rotating platform artificial knee prosthesis with posterior stabilizers by finite element analysis

verfasst von: Saúl Íñiguez-Macedo, Fátima Somovilla-Gómez, Rubén Lostado-Lorza, Marina Corral-Bobadilla, María Ángeles Martínez-Calvo, Félix Sanz-Adán

Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this paper is to design a rotating platform knee prosthesis with posterior stabilizers. This design is based on reverse engineering and interactive acquisition and reconstruction of 3D models combined with the finite element method. A 3D geometric model of a healthy knee joint was created from an anatomical knee model by using an active acquisition system based on a 3D scanner. This healthy model comprises a portion of the long bones (femur, tibia and fibula), as well as the transverse ligament, medial collateral ligament, posterior cruciate ligament, anterior cruciate ligament, medial meniscus and cartilage. The digital model that was obtained was repaired and converted to an engineering drawing format by use of CATIA© software. Also, based on the foregoing format, a rotating platform knee prosthesis was designed and assembled by this software. Once the healthy and artificial models were repaired, the Mentat Marc© software was used to develop the healthy and artificial knee FE models. From the anthropometry of the human body, a combination of loads and positions were obtained by use of 3D Static Strength Prediction software. The normal stresses, Von Mises stresses and all relative displacements of the healthy and artificial knee FE model were determined. The Von Mises stresses on both the cortical and the trabecular bone of the artificial and healthy knee FE model were analyzed and compared. The prosthesis was designed for the knee of a male patient of height and body weight of 190 cm and 120 kg, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hopkins, A.R., New, A.M., Rodriguez-y-Baena, F., Taylor, M.: Finite element analysis of unicompartmental knee arthroplasty. Med. Eng. Phys. 32(1), 14–21 (2010)CrossRef Hopkins, A.R., New, A.M., Rodriguez-y-Baena, F., Taylor, M.: Finite element analysis of unicompartmental knee arthroplasty. Med. Eng. Phys. 32(1), 14–21 (2010)CrossRef
2.
Zurück zum Zitat Argenson, J.N.A., Chevrol-Benkeddache, Y., Aubaniac, J.M.: Modern unicompartmental knee arthroplasty with cement: a three to ten-year follow-up study. JBJS 84(12), 2235–2239 (2002)CrossRef Argenson, J.N.A., Chevrol-Benkeddache, Y., Aubaniac, J.M.: Modern unicompartmental knee arthroplasty with cement: a three to ten-year follow-up study. JBJS 84(12), 2235–2239 (2002)CrossRef
3.
Zurück zum Zitat Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., Hewett, T.E., Goel, V.K.: Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng. 136(1), 011002 (2014)CrossRef Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., Hewett, T.E., Goel, V.K.: Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng. 136(1), 011002 (2014)CrossRef
4.
Zurück zum Zitat Adouni, M., Shirazi-Adl, A., Shirazi, R.: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. J. Biomech. 45(12), 2149–2156 (2012)CrossRef Adouni, M., Shirazi-Adl, A., Shirazi, R.: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. J. Biomech. 45(12), 2149–2156 (2012)CrossRef
5.
Zurück zum Zitat Baldwin, M.A., Clary, C.W., Fitzpatrick, C.K., Deacy, J.S., Maletsky, L.P., Rullkoetter, P.J.: Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J. Biomech. 45(3), 474–483 (2012)CrossRef Baldwin, M.A., Clary, C.W., Fitzpatrick, C.K., Deacy, J.S., Maletsky, L.P., Rullkoetter, P.J.: Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J. Biomech. 45(3), 474–483 (2012)CrossRef
6.
Zurück zum Zitat Godest, A.C., Beaugonin, M., Haug, E., Taylor, M., Gregson, P.J.: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 35(2), 267–275 (2002)CrossRef Godest, A.C., Beaugonin, M., Haug, E., Taylor, M., Gregson, P.J.: Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J. Biomech. 35(2), 267–275 (2002)CrossRef
7.
Zurück zum Zitat Nordin, M., Frankel, V.H. (eds.): Basic Biomechanics of the Musculoskeletal System. Lippincott Williams & Wilkins, Philadelphia (2001) Nordin, M., Frankel, V.H. (eds.): Basic Biomechanics of the Musculoskeletal System. Lippincott Williams & Wilkins, Philadelphia (2001)
8.
Zurück zum Zitat Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Des. Manuf. 10(4), 387–400 (2016)CrossRef Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Des. Manuf. 10(4), 387–400 (2016)CrossRef
9.
Zurück zum Zitat Ingrassia, T., Nalbone, L., Nigrelli, V., Tumino, D., & Ricotta, V.: Finite element analysis of two total knee joint prostheses. Int. J. Interact. Des. Manuf. 7(2), 1–11 (2013) Ingrassia, T., Nalbone, L., Nigrelli, V., Tumino, D., & Ricotta, V.: Finite element analysis of two total knee joint prostheses. Int. J. Interact. Des. Manuf. 7(2), 1–11 (2013)
10.
Zurück zum Zitat Yoshioka, Y., Siu, D., Cooke, T.D.: The anatomy and functional axes of the femur. J. Bone Joint Surg. Am. 69(6), 873–880 (1987)CrossRef Yoshioka, Y., Siu, D., Cooke, T.D.: The anatomy and functional axes of the femur. J. Bone Joint Surg. Am. 69(6), 873–880 (1987)CrossRef
11.
Zurück zum Zitat Kurosawa, H., Walker, P.S., Abe, S., Garg, A., Hunter, T.: Geometry and motion of the knee for implant and orthotic design. J. Biomech. 18(7), 487493–491499 (1985)CrossRef Kurosawa, H., Walker, P.S., Abe, S., Garg, A., Hunter, T.: Geometry and motion of the knee for implant and orthotic design. J. Biomech. 18(7), 487493–491499 (1985)CrossRef
12.
Zurück zum Zitat Iseki, F., Tomatsu, T.: The biomechanics of the knee joint with special reference to the contact area. Keio J. Med. 25(1), 37–44 (1976)CrossRef Iseki, F., Tomatsu, T.: The biomechanics of the knee joint with special reference to the contact area. Keio J. Med. 25(1), 37–44 (1976)CrossRef
13.
Zurück zum Zitat Andriacchi, T.P., Stanwyck, T.S., Galante, J.O.: Knee biomechanics in total knee replacement. J. Arthroplasty 1(3), 211–219 (1986)CrossRef Andriacchi, T.P., Stanwyck, T.S., Galante, J.O.: Knee biomechanics in total knee replacement. J. Arthroplasty 1(3), 211–219 (1986)CrossRef
14.
Zurück zum Zitat Hull, M.L., Donahue, T.L.H., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002)CrossRef Hull, M.L., Donahue, T.L.H., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002)CrossRef
15.
Zurück zum Zitat 3D Static Strength Prediction Program Version 7.0.0. User’s Manual. The University of Michigan Center for Ergonomics (2017) 3D Static Strength Prediction Program Version 7.0.0. User’s Manual. The University of Michigan Center for Ergonomics (2017)
17.
Zurück zum Zitat McKeever, D.C., Pickett, J.C.: The classic. Tibial plateau prosthesis. Clin. Orthop. Rel. Res. 192, 3–12 (1985) McKeever, D.C., Pickett, J.C.: The classic. Tibial plateau prosthesis. Clin. Orthop. Rel. Res. 192, 3–12 (1985)
18.
23.
Zurück zum Zitat Carr, B.C., Goswami, T.: Knee implants—review of models and biomechanics. Mater. Des. 30(2), 398–413 (2009)CrossRef Carr, B.C., Goswami, T.: Knee implants—review of models and biomechanics. Mater. Des. 30(2), 398–413 (2009)CrossRef
27.
Zurück zum Zitat Estupinan, J.A., Bartel, D.L., Wright, T.M.: Residual stresses in ultra-high molecular weight polyethylene loaded cyclically by a rigid moving indenter in nonconforming geometries. J. Orthop. Res. 16(1), 80–88 (1998)CrossRef Estupinan, J.A., Bartel, D.L., Wright, T.M.: Residual stresses in ultra-high molecular weight polyethylene loaded cyclically by a rigid moving indenter in nonconforming geometries. J. Orthop. Res. 16(1), 80–88 (1998)CrossRef
28.
Zurück zum Zitat Sathasivam, S., Walker, P.S.: A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 30(2), 177–184 (1997)CrossRef Sathasivam, S., Walker, P.S.: A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 30(2), 177–184 (1997)CrossRef
29.
Zurück zum Zitat Unsworth, A., Downson, D., Wright, V.: The frictional behaviour of human synovial Joints—part I: natural joints. J. Lubr. Technol. 97(3), 369–376 (1975)CrossRef Unsworth, A., Downson, D., Wright, V.: The frictional behaviour of human synovial Joints—part I: natural joints. J. Lubr. Technol. 97(3), 369–376 (1975)CrossRef
30.
Zurück zum Zitat Penrose, J.M.T., Holt, G.M., Beaugonin, M., Hose, D.R.: Development of an accurate three-dimensional finite element knee model. Comput. Methods Biomech. Biomed. Eng. 5(4), 291–300 (2002)CrossRef Penrose, J.M.T., Holt, G.M., Beaugonin, M., Hose, D.R.: Development of an accurate three-dimensional finite element knee model. Comput. Methods Biomech. Biomed. Eng. 5(4), 291–300 (2002)CrossRef
31.
Zurück zum Zitat Innocenti, B., Bilgen, Ö.F., Labey, L., van Lenthe, G.H., Vander Sloten, J., Catani, F.: Load sharing and ligament strains in balanced, overstuffed and understuffed UKA. A validated finite element analysis. J. Arthroplasty 29(7), 1491–1498 (2014)CrossRef Innocenti, B., Bilgen, Ö.F., Labey, L., van Lenthe, G.H., Vander Sloten, J., Catani, F.: Load sharing and ligament strains in balanced, overstuffed and understuffed UKA. A validated finite element analysis. J. Arthroplasty 29(7), 1491–1498 (2014)CrossRef
32.
Zurück zum Zitat McCutchen, C.W.: The frictional properties of animal joints. Wear 5(1), 1–17 (1962)CrossRef McCutchen, C.W.: The frictional properties of animal joints. Wear 5(1), 1–17 (1962)CrossRef
33.
Zurück zum Zitat Wang, Y., Fan, Y., Zhang, M.: Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med. Eng. Phys. 36(4), 439–447 (2014)CrossRef Wang, Y., Fan, Y., Zhang, M.: Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med. Eng. Phys. 36(4), 439–447 (2014)CrossRef
34.
Zurück zum Zitat Kayabasi, O., Ekici, B.: The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Mater. Des. 28(8), 2269–2277 (2007)CrossRef Kayabasi, O., Ekici, B.: The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Mater. Des. 28(8), 2269–2277 (2007)CrossRef
35.
Zurück zum Zitat Ashman, R.B., Cowin, S.C., Van Buskirk, W.C., Rice, J.C.: A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17(5), 349–361 (1984)CrossRef Ashman, R.B., Cowin, S.C., Van Buskirk, W.C., Rice, J.C.: A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17(5), 349–361 (1984)CrossRef
36.
Zurück zum Zitat Ramaniraka, N.A., Terrier, A., Theumann, N., Siegrist, O.: Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin. Biomech. 20(4), 434–442 (2005)CrossRef Ramaniraka, N.A., Terrier, A., Theumann, N., Siegrist, O.: Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin. Biomech. 20(4), 434–442 (2005)CrossRef
37.
Zurück zum Zitat Pena, E., Calvo, B., Martinez, M.A., Doblare, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006)CrossRef Pena, E., Calvo, B., Martinez, M.A., Doblare, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006)CrossRef
38.
Zurück zum Zitat Donahue, T.L.H., Hull, M.L., Rashid, M.M., Jacobs, C.R.: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 36(1), 19–34 (2003)CrossRef Donahue, T.L.H., Hull, M.L., Rashid, M.M., Jacobs, C.R.: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 36(1), 19–34 (2003)CrossRef
39.
Zurück zum Zitat Cowin, S.C.: The Mechanical Properties of Cortical Bone Tissue, pp. 98–127. CRC Press, Boca Raton (1989) Cowin, S.C.: The Mechanical Properties of Cortical Bone Tissue, pp. 98–127. CRC Press, Boca Raton (1989)
40.
Zurück zum Zitat Bendjaballah, M.Z., Shirazi-Adl, A., Zukor, D.J.: Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2), 69–79 (1995)CrossRef Bendjaballah, M.Z., Shirazi-Adl, A., Zukor, D.J.: Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2), 69–79 (1995)CrossRef
41.
Zurück zum Zitat LeRoux, M.A., Setton, L.A.: Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J. Biomech. Eng. 124(3), 315–321 (2002)CrossRef LeRoux, M.A., Setton, L.A.: Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J. Biomech. Eng. 124(3), 315–321 (2002)CrossRef
42.
Zurück zum Zitat Tissakht, M., Ahmed, A.M.: Tensile stress–strain characteristics of the human meniscal material. J. Biomech. 28(4), 411–422 (1995)CrossRef Tissakht, M., Ahmed, A.M.: Tensile stress–strain characteristics of the human meniscal material. J. Biomech. 28(4), 411–422 (1995)CrossRef
43.
Zurück zum Zitat Skaggs, D.L., Warden, W.H., Mow, V.C.: Radial tie fibers influence the tensile properties of the bovine medial meniscus. J. Orthop. Res. 12(2), 176–185 (1994)CrossRef Skaggs, D.L., Warden, W.H., Mow, V.C.: Radial tie fibers influence the tensile properties of the bovine medial meniscus. J. Orthop. Res. 12(2), 176–185 (1994)CrossRef
44.
Zurück zum Zitat Whipple, R., Wirth, C.R., Mow, V.C.: Mechanical properties of the meniscus. Bioeng. Div. ASME 32–33 (1984) Whipple, R., Wirth, C.R., Mow, V.C.: Mechanical properties of the meniscus. Bioeng. Div. ASME 32–33 (1984)
45.
Zurück zum Zitat Fithian, D.C., Schmidt, M.B., Ratcliffe, A., Mow, V.C.: Human meniscus tensile properties: regional variation and biochemical correlation. Trans. Orthop. Res. Soc. 35, 205 (1989) Fithian, D.C., Schmidt, M.B., Ratcliffe, A., Mow, V.C.: Human meniscus tensile properties: regional variation and biochemical correlation. Trans. Orthop. Res. Soc. 35, 205 (1989)
46.
Zurück zum Zitat Aspden, R.M.: A model for the function and failure of the meniscus. Eng. Med. 14(3), 119–122 (1985)CrossRef Aspden, R.M.: A model for the function and failure of the meniscus. Eng. Med. 14(3), 119–122 (1985)CrossRef
47.
Zurück zum Zitat Hefzy, M.S., Grood, E.S., Zoghi, M.: An axisymmetric finite element model of the meniscus. Bioeng. Div. ASME 51–52 (1987) Hefzy, M.S., Grood, E.S., Zoghi, M.: An axisymmetric finite element model of the meniscus. Bioeng. Div. ASME 51–52 (1987)
48.
Zurück zum Zitat Schreppers, G.J.M.A., Sauren, A.A.H.J., Huson, A.: A numerical model of the load transmission in the tibio-femoral contact area. Proc. Inst. Mech. Eng. H 204(1), 53–59 (1990)CrossRef Schreppers, G.J.M.A., Sauren, A.A.H.J., Huson, A.: A numerical model of the load transmission in the tibio-femoral contact area. Proc. Inst. Mech. Eng. H 204(1), 53–59 (1990)CrossRef
49.
Zurück zum Zitat Perie, D., Hobatho, M.C.: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin. Biomech. 13(6), 394–402 (1998)CrossRef Perie, D., Hobatho, M.C.: In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin. Biomech. 13(6), 394–402 (1998)CrossRef
50.
Zurück zum Zitat Beillas, P., et al.: A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J. Biomech. 37(7), 1019–1030 (2004)CrossRef Beillas, P., et al.: A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J. Biomech. 37(7), 1019–1030 (2004)CrossRef
51.
Zurück zum Zitat Vairis, A., Petousis, M., Vidakis, N., Kandyla, B., Tsainis, A.M.: Evaluation of a posterior cruciate ligament deficient human knee joint finite element model. QSci. Connect 21, 1–10 (2014) Vairis, A., Petousis, M., Vidakis, N., Kandyla, B., Tsainis, A.M.: Evaluation of a posterior cruciate ligament deficient human knee joint finite element model. QSci. Connect 21, 1–10 (2014)
52.
Zurück zum Zitat Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31(8), 753–757 (1998)CrossRef Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31(8), 753–757 (1998)CrossRef
53.
Zurück zum Zitat Quapp, K.M., Weiss, J.A.: Material characterization of human medial collateral ligament. J. Biomech. Eng. 120(6), 757–763 (1998)CrossRef Quapp, K.M., Weiss, J.A.: Material characterization of human medial collateral ligament. J. Biomech. Eng. 120(6), 757–763 (1998)CrossRef
54.
Zurück zum Zitat Woo, S.L., Almarza, A.J., Karaoglu, S., Abramowitch, S.D.: Functional tissue engineering of ligament and tendon injuries. In: Atala, A., Lanza, R., Thomson, J.A., Nerem, M. (eds.) Principles of Regenerative Medicine, pp. 1206–1231. Academic Press, San Diego (2008) Woo, S.L., Almarza, A.J., Karaoglu, S., Abramowitch, S.D.: Functional tissue engineering of ligament and tendon injuries. In: Atala, A., Lanza, R., Thomson, J.A., Nerem, M. (eds.) Principles of Regenerative Medicine, pp. 1206–1231. Academic Press, San Diego (2008)
55.
Zurück zum Zitat Shimomura, T., Jia, F., Niyibizi, C., Woo, S.L.Y.: Antisense oligonucleotides reduce synthesis of procollagen \(\alpha \)1 (V) chain in human patellar tendon fibroblasts: Potential application in healing ligaments and tendons. Connect. Tissue Res. 44(3–4), 167–172 (2003)CrossRef Shimomura, T., Jia, F., Niyibizi, C., Woo, S.L.Y.: Antisense oligonucleotides reduce synthesis of procollagen \(\alpha \)1 (V) chain in human patellar tendon fibroblasts: Potential application in healing ligaments and tendons. Connect. Tissue Res. 44(3–4), 167–172 (2003)CrossRef
56.
Zurück zum Zitat Chandrashekar, N., Mansouri, H., Slauterbeck, J., Hashemi, J.: Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39(16), 2943–2950 (2006)CrossRef Chandrashekar, N., Mansouri, H., Slauterbeck, J., Hashemi, J.: Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39(16), 2943–2950 (2006)CrossRef
57.
Zurück zum Zitat Butler, D.L., Guan, Y., Kay, M.D., Cummings, J.F., Feder, S.M., Levy, M.S.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25(5), 511–518 (1992)CrossRef Butler, D.L., Guan, Y., Kay, M.D., Cummings, J.F., Feder, S.M., Levy, M.S.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25(5), 511–518 (1992)CrossRef
58.
Zurück zum Zitat Noyes, F.R., Grood, E.S.: The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58(8), 1074–82 (1976)CrossRef Noyes, F.R., Grood, E.S.: The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58(8), 1074–82 (1976)CrossRef
59.
Zurück zum Zitat Butler, D.L., Kay, M.D., Stouffer, D.C.: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomech. 19(6), 425–432 (1986)CrossRef Butler, D.L., Kay, M.D., Stouffer, D.C.: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomech. 19(6), 425–432 (1986)CrossRef
60.
Zurück zum Zitat Harner, C.D., et al.: The human posterior cruciate ligament complex: an interdisciplinary study: ligament morphology and biomechanical evaluation. Am. J. Sports Med. 23(6), 736–745 (1995)CrossRef Harner, C.D., et al.: The human posterior cruciate ligament complex: an interdisciplinary study: ligament morphology and biomechanical evaluation. Am. J. Sports Med. 23(6), 736–745 (1995)CrossRef
61.
Zurück zum Zitat Race, A., Amis, A.A.: The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27, 13–24 (1994)CrossRef Race, A., Amis, A.A.: The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27, 13–24 (1994)CrossRef
62.
Zurück zum Zitat Blunn, G.W., Joshi, A.B., Minns, R.J., Lidgren, L., Lilley, P., Ryd, L., Walker, P.S.: Wear in retrieved condylar knee arthroplasties: a comparison of wear in different designs of 280 retrieved condylar knee prostheses. J. Arthroplasty 12(3), 281–290 (1997)CrossRef Blunn, G.W., Joshi, A.B., Minns, R.J., Lidgren, L., Lilley, P., Ryd, L., Walker, P.S.: Wear in retrieved condylar knee arthroplasties: a comparison of wear in different designs of 280 retrieved condylar knee prostheses. J. Arthroplasty 12(3), 281–290 (1997)CrossRef
Metadaten
Titel
The process of designing a rotating platform artificial knee prosthesis with posterior stabilizers by finite element analysis
verfasst von
Saúl Íñiguez-Macedo
Fátima Somovilla-Gómez
Rubén Lostado-Lorza
Marina Corral-Bobadilla
María Ángeles Martínez-Calvo
Félix Sanz-Adán
Publikationsdatum
12.09.2017
Verlag
Springer Paris
Erschienen in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Ausgabe 3/2018
Print ISSN: 1955-2513
Elektronische ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-017-0428-6

Weitere Artikel der Ausgabe 3/2018

International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2018 Zur Ausgabe