Skip to main content

Advertisement

Log in

3D interactive environment for the design of medical devices

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The effectiveness of custom-made prostheses or orthoses heavily depends on the experience and skills of the personnel involved in their production. For complex devices, such as lower limb prosthesis, a conventional manual approach affects the process at the point that the result is frequently not acceptable at the first trial. The paper presents a computer-aided environment, named socket modelling assistant\(^{2}\) (i.e., \(\hbox {SMA}^{2})\), to interactively design the socket of lower limb prosthesis by implementing a set of design rules extrapolated from the traditional development process. The new computer-aided environment has been implemented embracing a low-cost philosophy and using open source libraries to provide a solution affordable also by small orthopaedic laboratories. The system permits to modify and interact with the 3D model of residual limb to create the socket geometric model ready to be manufactured by means of additive manufacturing. \(\hbox {SMA}^{2}\) embeds medical knowledge related to the device functioning, the conventional process and the way orthopaedic technicians work so that it can be much more reliable and repeatable compared to the conventional process, but still enough similar to it to be accepted by the involved personnel. In the paper, the new 3D design procedure is described in detail, from the acquisition of patient’s data to preliminary and customized modelling, and new geometric tools to perform context–related operations are shown. A case study is used to clarify the way the system works and to provide an example of the outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. 3DSlicer. Open source software plat-form for medical image informatics. https://www.slicer.org/

  2. Autodesk. Meshmixer. http://www.meshmixer.com/

  3. Barone, S., Paoli, A., Razionale, A., Savig-nano, R.: Computer aided modelling to simulate the biomechanical behaviour of customised orthodontic removable appliances. Int. J. Interact. Des. Manuf. 10(4), 387–400 (2016)

    Article  Google Scholar 

  4. Braganca, S., Arezes, P., Carvalho, M.: An overview of the current three-dimensional body scanners for anthropometric data collection. Occup Saf Hyg III, 149–153 (2015)

    Article  Google Scholar 

  5. Brandt, M.: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Wood-head Publishing, Cambridge (2016)

    Google Scholar 

  6. Calvo, I., Lopez, F., Zulueta, E., Gonzalez-Nalda, P.: Towards a methodology to build virtual reality manufacturing systems based on free open software technologies. Int. J. Interact. Des. Manuf. 11(3), 569–580 (2016)

    Article  Google Scholar 

  7. Chen, X., Xu, L., Wang, H., Wang, F., Wang, Q., Kikinis, R.: Development of a surgical navigation system based on 3d slicer for intraoperative implant placement surgery. Med. Eng. Phys. 41, 81–89 (2017)

    Article  Google Scholar 

  8. Colombo, G., Comotti, C., Redaelli, D. F., Regaz-zoni, D., Rizzi, C., Vitali, A.: A method to improve prosthesis leg design based on pressure analysis at the socket-residual limb interface. In: Volume 1A: 36th Computers and Information in Engineering Conference (2016)

  9. Colombo, G., Facoetti, G., Rizzi, C., Vitali, A., Zanello, A.: Automatic 3d reconstruction of transfemoral residual limb from MRI images. In: Lecture Notes in Computer Science, pp. 324–332 (2013)

  10. Colombo, G., Facoetti, G., Morotti, R., Rizzi, C.: Physically based modelling and simulation to innovate socket design. Comput. Aided Des. Appl. 8(4), 617–631 (2011)

    Article  Google Scholar 

  11. Colombo, G., Facoetti, G., Rizzi, C.: A digital patient for computer-aided prosthesis design. Interface Focus 3(2), 20120082–20120082 (2013)

    Article  Google Scholar 

  12. Colombo, G., Facoetti, G., Rizzi, C., Vi-tali, A.: SimplyNURBS: a software library to model nurbs for medical applications. Comput. Aided Des. Appl. 12(6), 794–802 (2015)

    Article  Google Scholar 

  13. Comotti, C., Regazzoni, D., Rizzi, C., Vitali, A.: Multi-material design and 3D printing method of lower limb prosthetic sockets. In: Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques—REHAB ’15 (2015)

  14. Domnguez, M.G., Hernandez, C., Ruisoto, P., Juanes, J.A., Prats, A., Hernandez, T.: Morpho-logical and volumetric assessment of cerebral ventricular system with 3d slicer software. J. Med. Syst. 40(6), 154 (2016)

    Article  Google Scholar 

  15. Fantini, M., De Crescenzio, F., Ciocca, L.: De-sign and rapid manufacturing of anatomical pros-thesis for facial rehabilitation. Int. J. Interact. Des. Manuf. 7(1), 51–62 (2012)

    Article  Google Scholar 

  16. Fasel, J.H.D., Aguiar, D., Kiss-Bodolay, D., Montet, X., Kalangos, A., Stimec, B.V., Ratib, O.: Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3d-printing technologies. Surg. Radiol. Anat. 38(3), 361–367 (2016)

    Article  Google Scholar 

  17. Fok, W.W.: Opening up the future of open source: from open innovation to the internet of things for the built environment. Archit. Des. 86(5), 116–125 (2016)

    Google Scholar 

  18. Ganry, L., Hersant, B., Quilichini, J., Leyder, P., Meningaud, P.: Use of the 3D surgical modelling technique with open-source software for mandibular fibula free flap reconstruction and its surgical guides. J. Stomatol. Oral Maxillofac. Surg. 118(3), 197–202 (2017)

    Article  Google Scholar 

  19. Gao, Y., Duan, H.: A survey of the virtual re-building of manufacturing process based on virtual and reality technologies. In: Anti-counterfeiting, Security, and Identi cation (2012)

  20. Gao, Y.W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Williams, C.B., Wang, C.C.L., Shin, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. Appl. 69, 65–89 (2015)

    Article  Google Scholar 

  21. Goldman, L.W.: Principles of CT and CT technology. J. Nucl. Med. Technol. 35(3), 115–128 (2007)

    Article  Google Scholar 

  22. Haak, D., Page, C.-E., Deserno, T.M.: A sur-vey of DICOM viewer software to integrate clinical research and medical imaging. J. Digit. Imaging 29(2), 206–215 (2016)

    Article  Google Scholar 

  23. Hebert, K.V., Keen, R.S., King, D.R., Shady, S.F.: Gait-Monitoring wearable technology for transtibial prosthetics. In Volume 3: Biomedical and Biotechnology Engineering, ASME 2016 International Mechanical Engineering Congress and Exposition (2016)

  24. Héno, R., Chandelier L.: 3D digitization by laser scanner. In 3D Modeling of Buildings, John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 85–124 (2014)

  25. InVesalius. Invesalius software application. https://www.cti.gov.br/en/invesalius

  26. Karbowski, K., Szczybura, M., Sujka, W.: 3D scanner for medical applications. Mechanika 12, 1904–1905 (2016)

    Article  Google Scholar 

  27. Lanzotti, A., Grasso, M., Staiano, G., Mar-torelli, M.: The impact of process parameters on me-chanical properties of parts fabricated in pla with an open-source 3-d printer. Rapid Prototyp. J. 21(5), 604–617 (2015)

    Article  Google Scholar 

  28. Lipton, M.L.: Totally Accessible MRI: A User’s Guide to Principles, Technology, and Applications. Springer, Berlin (2010)

    Google Scholar 

  29. Materialise. Services for medical and manufacturing. http://www.materialise.com/en/home

  30. MITK. The medical imaging interaction toolkit (mitk)—mitk.org. http://mitk.org/wiki/MITK

  31. Mooney, J.J., Sarwani, N., Coleman, M.L., Fotos, J.S.: Evaluation of three-dimensional printed materials for simulation by computed tomography and ultrasound imaging. Simul. Healthc. 12(3), 182–188 (2017)

    Article  Google Scholar 

  32. Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., Fato, M.M., Cardi-nale, F.: Seeg assistant: a 3dslice extension to support epilepsy surgery. BMC Bioinform. 18(1), 124 (2017)

    Article  Google Scholar 

  33. Niatech. Niatech application. http://niatech.org/

  34. OpenCascade. CAD/CAM Softeware Development Kit. https://www.opencascade.com/

  35. Openhub.net. The devide open source project on open hub. https://www.openhub.net/p/DeVIDE

  36. Patalano, S., Lanzotti, A., Del Giudice, D., Vi-tolo, F., Gerbino, S.: On the usability assessment of the graphical user interface related to a digital pattern software tool. Int. J. Interact. Des. Manuf. 11(3), 457–469 (2017)

    Article  Google Scholar 

  37. Qt. Cross-platform software development for embedded & desktop. https://www.qt.io

  38. RadiAnt. Radiant DICOM viewer. https://www.radiantviewer.com/

  39. Rodin4D. Cad/cam solution for prosthetics and orthotics. http://rodin4d.com/en

  40. Russell, J., Cohn, R.: Osirix. Book on Demand Limited, (July 2012)

  41. Sanchez-Gomez, S., Herrero-Salado, T.F., Maza-Solano, J.M., Ropero-Romero, F., Gonzalez-Garc a, J., Ambrosiani-Fernandez, J.: Improved planning of endoscopic sinonasal surgery from 3-dimensional images with osirix R and stereolithog-raphy. Acta Otorrinolaringol. (English Edition) 66(6), 317–325 (2015)

    Article  Google Scholar 

  42. Sengeh, D.M., Herr, H.: A Variable-Impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J. Prosthet. Orthot. 25(3), 129–137 (2013)

    Article  Google Scholar 

  43. Sengeh, D.M., Moerman, K.M., Petron, A., Herr, : Multi-material 3-d viscoelastic model of a transtibial residuum from in-vivo indentation and mri data. J. Mech. Behav. Biomed. Mater. 59, 379–392 (2016)

    Article  Google Scholar 

  44. Siavashpour, Z., Aghamiri, M.R., Jaberi, R., Dehghan-Manshadi, H.R., Sedaghat, M., Kirisits, C.: Evaluating the utility of 3d slicer” as a fast and independent tool to assess intrafractional organ dose variations in gynecological brachytherapy. Brachytherapy 15(4), 514–523 (2016)

    Article  Google Scholar 

  45. Skanect. Skanect 3d scanning software by occipital. http://skanect.occipital.com/

  46. Sorkine, C. O., Cohen-Or, D., Lipman, Y., Alexa, M., Rossl, Seidel, H.-P.: Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing—SGP ’04 (2004)

  47. Stanculescu, L., Chaine, R., Cani, M.-P.: Freestyle: sculpting meshes with self-adaptive topology. Comput. Graph. 35(3), 614–622 (2011)

    Article  Google Scholar 

  48. Themo Fisher Scientific. Amira for Preclinical Imaging. https://www.fei.com/software/amira-for-preclinical-imaging/

  49. Vorum. Cad cam for prosthetics and orthotics—vorum. http://vorum.com/

  50. VTK. The visualization tool kit. https://www.vtk.org/

  51. Wang, C.C.L.: Geometric Modeling and Reasoning of Human-Centered Freeform Products. Springer, Berlin (2013)

    Book  Google Scholar 

  52. WilloWood. Willowood product and serivices. https://www.willowwoodco.com/

  53. Wimpenny, D.I., Pandey, P.M., Ku-mar, L.Jyothish: Advances in 3D Printing & Additive Manufacturing Technologies. Springer, Singapore (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Rizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, G., Rizzi, C., Regazzoni, D. et al. 3D interactive environment for the design of medical devices. Int J Interact Des Manuf 12, 699–715 (2018). https://doi.org/10.1007/s12008-018-0458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0458-8

Keywords

Navigation