Skip to main content
Log in

Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the applicability of a “fed-batch” strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a β-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dien, B. S., Bothast, R. J., Nichols, N. N., & Cotta, M. A. (2002). International Sugar Journal, 104(1241), 204–211.

    CAS  Google Scholar 

  2. Robertson, G. H., Wong, D. W. S., Lee, C. C., Wagschal, K., Smith, M. R., & Orts, W. J. (2006). Journal of Agricultural and Food Chemistry, 54, 353–365.

    Article  CAS  Google Scholar 

  3. Sun, Y., & Cheng, J. (2002) Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  4. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  5. Varga, E., Klinke, H. B., Réczey, K., & Thomsen, A. B. (2004). Biotechnology and Bioengineering, 88(5), 567–574.

    Article  CAS  Google Scholar 

  6. Thompson, D. N., & Chen, H.-C. (1992). Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  7. Sheehan, J., & Himmel, M. E. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  8. Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803.

    Article  CAS  Google Scholar 

  9. Thomas, K. C., & Ingledew, W. M. (1992). Journal of Industrial Microbiology, 10, 61–68.

    Article  CAS  Google Scholar 

  10. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  11. Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–59.

    Article  CAS  Google Scholar 

  12. Sluiter, A. (2005). Laboratory Analytical Procedure 002. Retrieved from http://www1.eere.energy.gov/biomass/analytical_procedures.html#LAP-002.

  13. Adey, B., & Baker, J. (1996). Laboratory Analytical Procedure 006. Retrieved from http://devafdc.nrel.gov/pdfs/4689.pdf.

  14. Rosgaard, L., Pedersen, S., Cherry, J. R., Harris, P., & Meyer, A. S. (2006). Biotechnology Progress, 22, 493–498.

    Article  CAS  Google Scholar 

  15. Linde, M., Galbe, M., & Zacchi, G. (2006). Applied Biochemistry and Biotechnology, 129–132, 546–562.

    Article  Google Scholar 

  16. Tengborg, C., Galbe M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.

    Article  CAS  Google Scholar 

  17. Yang, B., Willies, D. M., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 1122–1128.

    Article  CAS  Google Scholar 

  18. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  19. Mes-Hartree, M., & Saddler, J. N. (1983). Biotechnology Letters, 5, 531–536.

    Article  CAS  Google Scholar 

  20. Pimenova, N. V., & Hanley, T. R. (2004). Applied Biochemistry and Biotechnology, 113–116, 347–360.

    Article  Google Scholar 

  21. Allen, D. G., & Robinson, C. W. (1990). Chemical Engineering Science, 45(1), 37–48.

    Article  CAS  Google Scholar 

  22. Barnes, H. A., & Nguyen, Q. D. (2001). Journal of Non-Newtonian Fluid Mechanics, 98, 1–14.

    Article  CAS  Google Scholar 

  23. Svihla, C. K., Dronawat, S. N., Donnelly, J. A., Rieth, T. C., & Hanley, T. R. (1997). Applied Biochemistry and Biotechnology, 63–5, 375–385.

    Article  Google Scholar 

  24. Brookfield Engineering Lab. Inc. Retrieved from http://www.can-am.net/suppliers/brookfield/more_solutions.pdf.

  25. Takahashi, T., & Sakata, T. (2002). Journal of Nutrition, 132(5), 1026–1030.

    CAS  Google Scholar 

  26. Houchin, T. L., & Hanley, T. R. (2004). Applied Biochemistry and Biotechnology, 113, 723–732.

    Article  Google Scholar 

  27. Rudolf, A., Alkasrawi, M., Zacchi, G., & Lidén, G. (2005). Enzyme and Microbial Technology, 37, 195–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosgaard, L., Andric, P., Dam-Johansen, K. et al. Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw. Appl Biochem Biotechnol 143, 27–40 (2007). https://doi.org/10.1007/s12010-007-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0028-1

Keywords

Navigation