Skip to main content
Log in

Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, β-Glucosidase, and Hemicellulase Preparations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  2. Knauf, M., & Moniruzzaman, M. (2004). International Sugar Journal, 106, 147–150.

    CAS  Google Scholar 

  3. Rosgaard, L., Pedersen, S., Cherry, J. R., Harris, P., & Meyer, A. S. (2006). Biotechnology Progress, 22, 493–498.

    Article  CAS  Google Scholar 

  4. Martin, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerdal, B., & Jönsson, L. J. (2002). Enzyme and Microbial Technology, 31, 274–282.

    Article  CAS  Google Scholar 

  5. Kaar, W. E., Gutierrez, C. V., & Kinoshita, C. M. (1998). Biomass and Bioenergy, 14, 277–287.

    Article  CAS  Google Scholar 

  6. Fox, D. J., Gray, P. P., Dunn, N. W., & Marsden, W. L. (1987). Journal of Chemical Technology and Biotechnology, 40, 117–132.

    CAS  Google Scholar 

  7. Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., & Dale, B. E. (1991). Applied Biochemistry and Biotechnology, 28/29, 59–74.

    Google Scholar 

  8. Van Zyl, C., Prior, B. A., & du Preez, J. C. (1988). Applied Biochemistry and Biotechnology, 17, 357–369.

    Article  Google Scholar 

  9. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  10. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y. Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  11. Adney, B., & Baker, J. (1996). NREL laboratory analytical procedure. In Laboratory Analytical Procedure No. 006. Golden, CO: National Renewable Energy Laboratory.

  12. Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  13. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  14. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. Dale, B. E., & Moriera, M. J. (1982). Biotechnology and Bioengineering Symposium, 12, 31–43.

    Google Scholar 

  16. Singh, S., Pillay, B., Dilsook, V., & Prior, B. A. (2000). Journal of Applied Microbiology, 88, 975–982.

    Article  CAS  Google Scholar 

  17. Singh, S., Pillay, B., & Prior, B. A. (2000). Enzyme and Microbial Technology, 26, 502–508.

    Article  CAS  Google Scholar 

  18. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Matkov, A., Skomatovsky, A., et al. (2005). Enzyme and Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

  19. Dekker, R. F. H. (1986). Biotechnology and Bioengineering, 28, 1438–1442.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Benito Stradi, Giovanna DeQueiroz, and Chang-Ho Chung for the helpful discussions and preparation of the ammonium hydroxide-pretreated bagasse, Farzaneh Teymouri for the preparation of the AFEX-pretreated bagasse, Chardcie Verret and Brian White for the assistance with the analysis of the sugars, and Daan Nel at the University of Stellenbosch for the assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard A. Prior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prior, B.A., Day, D.F. Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, β-Glucosidase, and Hemicellulase Preparations. Appl Biochem Biotechnol 146, 151–164 (2008). https://doi.org/10.1007/s12010-007-8084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8084-0

Keywords

Navigation